
Journal of Electrical Engineering & Technology Vol. 6, No. 6, pp. 867~873, 2011
http://dx.doi.org/10.5370/JEET.2011.6.6.867

867

Reducing the Search Space for Pathfinding in Navigation Meshes by
Using Visibility Tests

Hyungil Kim*, Kyeonah Yu** and Juntae Kim†

Abstract – A navigation mesh (NavMesh) is a suitable tool for the representation of a three-
dimensional game world. A NavMesh consists of convex polygons covering free space, so the path can
be found reliably without detecting collision with obstacles. The main disadvantage of a NavMesh is
the huge state space. When the A* algorithm is applied to polygonal meshes for detailed terrain
representation, the pathfinding can be inefficient due to the many states to be searched. In this paper,
we propose a method to reduce the number of states searched by using visibility tests to achieve fast
searching even on a detailed terrain with a large number of polygons. Our algorithm finds the visible
vertices of the obstacles from the critical states and uses the heuristic function of A*, defined as the
distance to the goal through such visible vertices. The results show that the number of searched states
can be substantially reduced compared to the A* search with a straight-line distance heuristic.

Keywords: Path finding, Navigation mesh, Visibility graph, A* search

1. Introduction

An efficient pathfinding process is necessary to achieve
autonomous movements of characters in a three-
dimensional (3D) environment, and A* algorithm is
generally used for searching [7, 17]. In addition, elaborated
terrain representation is required for the realistic movement
of characters, and this increases the search time for path
planning. Several methods for the representation of game
space exist, such as regular grids, waypoint graphs,
navigation meshes, and visibility graphs. The regular grid
method [18, 19] decomposes the game space into tiles; the
state space is the set of tiles and the operators are the
moves to the next tile in each compass and each diagonal
direction. This method is simple, but suffers from large
state space. The waypoint graph consists of nodes and links
manually placed by a level designer [16, 18]. There is a
trade-off between the size of the search space and the path
quality. The visibility graph (Vgraph) consists of a start
node, a goal node, nodes placed at the vertices of the
obstacles, and links connecting them, which include
obstacle boundaries [3, 5, 11]. The strongest advantage of
using Vgraph is the guarantee of the shortest path with the
A* algorithm [9, 14]. The navigation mesh (NavMesh)
decomposes a terrain as a set of convex polygons on a
walkable space [6, 15, 18]. The cells are irregular, instead
of regular grids, and they can represent the various

properties of the terrain. A popular type is the triangle-
based NavMesh, where cells are represented by various
triangles.

Among the four representative methods, the NavMesh is
the most preferred for representing a 3D game world
because it can simplify the representation of 3D game
space by a warped two-dimensional (2D) field. A 3D game
world is often represented by the waypoint graph. However,
such representation has many limitations due to the
placement of the manual node: it is difficult to implement
on a huge map or to share the intentions of the placement
among people in different levels of the design process.
Moreover, it is hard to apply the regular grid method and
the Vgraph in a 3D game world without additional
processing. Path planning can be more easily performed on
a NavMesh by projecting the 3D surfaces onto a 2D space.
The NavMesh, which can be generated automatically, is
more flexible in representing a 3D surface. One drawback
is that pathfinding on a NavMesh can be inefficient due to
the large search space. This can be solved by generating a
simplified NavMesh [10] based on the quadtree method or
by simplifying an existing NavMesh by merging adjacent
polygons [4]. However, methods based on NavMesh
simplifications have limitation when the terrain is
represented with an elaborated mesh of a large number of
triangles to achieve more realistic movements.

This paper proposes an efficient method to search the
state space represented by a NavMesh. We incorporate the
concept of the Vgraph into the NavMesh to reduce the
search space with visibility tests, which increases the speed
of searches even on an elaborated terrain with a large
number of polygons. We first find the visible vertices of the
obstacles from the current state and define the heuristic

† Corresponding Author: Department of Computer Engineering,
Dongguk University, Korea (jkim@dongguk.edu).

* Department of Multimedia, Korea Nazarene University, Cheonan,
Korea (hikim@kornu.ac.kr)

** Department of Computer, Duksung Women’s University, Seoul,
Korea (kyeonah@duksung.ac.kr)

Received: November 21, 2010; Accepted: September 1, 2011

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

868

function of A* as the distance to the goal through such
vertices. With the proposed heuristic, the number of states
visited decreases substantially compared to the plain search.
The efficiency of the proposed algorithm is demonstrated
through simulations with the plain A* and the A* with
visibility tests, respectively.

2. Pathfinding on a NavMesh

A NavMesh is the 2D projection of a 3D space

represented with a set of small convex polygons that
comprise the geometry information, such as the inclination
of the surface or the type of terrain. We can use 2D search
for pathfinding once a terrain is represented by a NavMesh.
This paper focuses on the A* search algorithm for
pathfinding on the triangle-based NavMesh.

2.1 NavMesh

A NavMesh decomposes the walkable 3D terrain into a

set of convex polygons. It should satisfy three conditions
[15]. First, it must consist of triangles, each of which is
contained only in a single plane. Second, all adjacent
meshes should have two vertices and one side in common.
Third, no two meshes should share a common plane. Fig. 1
shows an example of a terrain with obstacles represented
using a NavMesh. The NavMesh can be applied to various
types of terrain structures. By modeling the NavMesh to be
mutually exclusive of the static obstacles, the collision of
characters to the obstacles can be easily detected by the
examination of whether it reaches the boundary of the
mesh.

When a character moves on a mesh, the movement
vector is projected onto the plane of the corresponding
triangle, and a 2D algorithm checks the intersection of this
vector and the sides of the triangle. The character will
collide with an obstacle if the vector intersects with a side
that is not shared with another triangle.

2.2 A* Algorithm on a NavMesh

The pathfinding on a NavMesh can be performed with

the A* search algorithm. The state space in a NavMesh is
the set of triangles, and the operators are the moves to the
next triangles. In Fig. 1, the start and the goal states are the
triangles that include the start node and the goal node,
respectively. Three triangles – A, B, and C – around the
start state are its child states. The cost from one state to its
child state is defined as the distance from the center of the
state to the center of the child state through the middle
point of the sharing side. The evaluation function f(n) of a
state n is the sum of the distance from the start state to state
n and the heuristic value of the distance from the state n to
the goal state. The most widely used heuristic in

pathfinding is the Euclidean distance, which is defined as
the straight-line distance between n and the goal state. The
Euclidean distance heuristic is admissible.

Fig. 1 shows an example path found by the A* search.
The search result is a sequence of adjacent triangles that is
indicated as the colored triangles. The dashed line indicates
the trajectory connecting the centers of the adjacent
triangles through the middle point of the sharing side. The
actual movement trajectory can be made more straight and
smooth by using various techniques [8, 12]; however, it is
not shown in the figure.

Fig. 1. An example of a terrain represented in a navigation

mesh and the result of the search; the sequence of
the shaded triangles is a path from the start node to
the goal node

3. Pathfinding with Visibility Tests

Pathfinding on a NavMesh becomes inefficient when

many triangles are used for fine granularity. This is because
each triangle corresponds to a state in the state space search.
A large number of states is sometimes visited by the search
algorithm due to obstacles. This can be avoided if the
algorithm utilizes the information that the shortest path
must go through one of the visible vertices of the obstacles.
This section explains the method of using the visibility
information to reduce the size of the state space searched.

3.1 Visibility tests

Every visible vertex of polygonal obstacles can be

reached by a straight line, and the shortest path between the
start and the goal consists of visible edges - the edges
between two vertices that can see each other. This set of
visible edges is named by the visibility graph. The
visibility graph is widely used for pathfinding in robot path
planning and is recently applied for point-of-visibility
pathfinding in computer games because it guarantees the
shortest path [13, 20]. However, when the visibility graph
is used directly in path-finding, it cannot use the detailed

Hyungil Kim, Kyeonah Yu and Juntae Kim

869

information kept in every cell of a NavMesh because it
provides only a raw connection between nodes. In this
paper, the visibility information is used to compute a
superior heuristic function for the A* algorithm while the
search is performed on a NavMesh. The visibility is tested
in critical states, including the start state, as A* search
proceeds. The next section will explain how these critical
states are determined.

Finding all visible vertices from a point p is
computationally expensive because every line connecting p
and each vertex must be checked to see if it intersects with
any obstacle edge. The time complexity is O(n2), where n
is the number of vertices of the obstacles. We use the
rotational sweepline algorithm for a rapid visibility test [2].
According to the rotational sweepline algorithm, as we
sweep the plane in cyclic order, we can use the information
of the previous test for the rest. In Fig. 2, the plane is swept
by the half-line around p.

Fig. 2. The visibility test process: v1, v3, v7 are the visible

vertices from p; the whole plane is swept by the
half-line around p in cyclic order

Fig. 3. The binary search tree on the intersected edges; the

leaves of the tree store the intersected edges in order

The information about obstacle edges intersected by ρ is

maintained in a binary search tree in order. The obstacle
vertices are sorted in order of the clockwise angle and
stored in set W before the sweep starts: W = {v7, v3, v6, v8, v5,
v4, v2, v1}. The sweeping stops at every event (vertex) in W
and checks whether it is visible from p or not. This can
only be accomplished by checking the intersection between
the line segment pvi and the edge of the leftmost leaf node

of the binary search tree.
For example, in Fig. 2, the second event is v3, and

ρ intersects with the edges e8 and e7 before v3 and with the
edges e1, e3, e8, and e7 after v3. This information is stored in
the binary search tree (Fig. 3). The visibility of v3 from p
can be easily verified by checking whether the line
segment pv3 intersects with e8. Since pv3 does not intersect
with e8, v3 is visible from p. The binary search tree is then
updated by the deletion of all edges on the counter-
clockwise side of v3 and by the insertion of new edges on
the clockwise side of v3. This sweeping process continues
until ρ visits all the events in W. When there are n obstacle
vertices, the number of events is n, the initial sorting takes
O(nlogn) time, searching the leftmost edge in the tree takes
O(logn), and the status update operations takes O(logn).
Therefore, the overall time complexity is O(nlogn).

Fig. 4. An example of a visibility test in a 3D terrain; the

cube at the right is an obstacle

In a 3D terrain, the visibility test can be done on a 2D

projection of the mesh. In such case, the vertices found
may not be actually visible, but reachable without changing
the direction of movement [1]. Fig. 4 shows the result of
the visibility test and the line drawn on the 3D surface.

3.2 Integrating visibility information into the A*

search

The terrain is decomposed into cells in a NavMesh, each

of which has meaningful information about the terrain.
Therefore, we search cells on a NavMesh and check the
visibility from a state whenever necessary to integrate the
visibility information into the heuristic function, instead of
constructing the whole visibility graph. The simplest
admissible heuristic for pathfinding is the Euclidean
distance between a state s and a goal G, d(s,G). This
heuristic is admissible [9], and we modify it by integrating
the visibility information as follows.

We assume that the visible points (the visible vertices of
the obstacles and a goal if visible) from a state s are v1, v2,
…, vn. Since the shortest path to the goal must go through
one of the visible points to avoid the obstacles, the new

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

870

heuristic function hv(s) can be defined as in (1).

 1 1 2 2() min[(,) (,), (,) (,),vh s d s v d v G d s v d v G= + +
 ..., (,) (,)]n nd s v d v G+ (1)

The estimated distance to the goal from a state s is the

distance of the shortest path among the paths from s to G
through visible points. This new hv(s) is larger than the
straight-line distance from s to the goal d(s,G), but it is
smaller than the actual optimal distance h*(s) found on the
NavMesh, which may consists of more line segments. This
leads to the relation d(s,G) ≤ hv(s) ≤ h*(s). This implies that
the proposed heuristic is more informed than the Euclidean
distance heuristic and that the search algorithm using hv(s)
visits less number of states.

It is unnecessary to check the visibility for every state.
As the search continues, the visibility information is passed
to the selected child state, unless the search reaches a
critical state that is adjacent to one of the visible points. We
assume that s1 is selected after s, where s1 is not adjacent to
any visible point from s. Because every cell is convex,

there must be at least one child on the way to each visible
point from s. The selected child s1 must be closer to a
visible point than the parent s, but not on the straight line to
it, which leads to the equation hv(s) ≤ hv(s1) + d(s,s1).
Therefore, it is clear that the heuristic is monotone and
admissible. When the search reaches one of the visible
points, the visibility is retested. The new list of visible
points is passed to its children and used to compute a
heuristic value. The A* search algorithm with the visibility
test is presented in Fig. 5.

4. Simulation Results

We implemented the A* algorithm with the visibility test

using C++ and the OpenGL to support the theoretical
results in the previous section. In the demos, 3D terrain and
obstacles are modeled using the 3D Max. The mesh
representing the terrain surface is converted into the
OpenGL coordinate and used as a NavMesh. Fig. 6 shows
examples of pathfinding on a 3D terrain. Each example has
an obstacle, a starting point, and a goal point. The dot on
the left side is the start point. The shaded area indicates the
states (triangles) visited during the search from the start
point to the goal point. Fig. 6(a) is the result of the A*
search with the straight-line distance heuristic, and Fig.
6(b) is the result of the A* search with the proposed
heuristic using the visibility information. The figures show
that the A* search with the proposed heuristic visits a less
number of states compared to the original A* search.

(a) A* with the straight-
line distance heuristic

(b) A* with the heuristic
using visibility tests

Fig. 6. Comparison of the search areas in 3D terrain; the
nodes expanded by the search are shaded

We also performed simulations to compare the results

quantitatively. We run the A* algorithm with the Euclidean
distance heuristic (plain A*) and A* with the visibility test
heuristic (Vtest A*) with two obstacles. We then compared

Fig. 5. The A* search algorithm with the visibility test

Hyungil Kim, Kyeonah Yu and Juntae Kim

871

both the number of nodes visited during the search and the
execution time for various arrangements of obstacles. Fig.
7 shows the case of two fully overlapped obstacles.

Tables 1 and 2 show the results of running plain A* and
Vtest A* as we increase the overlapping of two obstacles.
The results show that, as the obstacles are overlapped more,
the number of nodes visited and the execution time of plain
A* rapidly increase due to the increased search space;
however, those of Vtest A* does not increase much when
they are compared to plain A*. When the obstacles are fully
overlapped, the search space of Vtest A* is only 6.1% of
the search space of plain A*, and the execution time of
Vtest A* is 10.6% of the execution time of plain A*. The
execution time of Vtest A* includes the visibility
computation time in addition to the search time. Therefore,
the execution time of Vtest A* is slightly higher than that of
plain A* when there is no overlap between two obstacles
(the start and the goal are visible to each other). This is due
to the overhead of visibility tests. This overhead is minor
compared to the search time, thus it minimally affects the
total execution time.

Fig. 7. An example of fully overlapped obstacles; the

nodes expanded by A* are shaded

Table 1. The number of expanded nodes as the
arrangement of two obstacles changes

Obstacles
overlap A* Vtest A* Vtest A*

/ A*
No 141 141 100.0%
1/3 562 163 29.0%
2/3 1,120 173 15.4%
Full 2,927 179 6.1%

Table 2. The execution time (sec) for search as the

arrangement of two obstacles changes

A* Vtest A* Obstacles
overlap Total Total Vtest Search

Vtest A*
/ A*

No 0.1888 0.1964 0.0088 0.1876 104.0%
1/3 0.7446 0.4276 0.2016 0.2260 57.4%
2/3 1.8409 0.4966 0.2050 0.2916 27.0%
Full 4.8401 0.5132 0.2081 0.3051 10.6%

Tables 3 and 4 show the results of running plain A* and
Vtest A* as we increase the number of obstacles. Since the
search space and the execution time depend on the
configuration of the obstacles, they do not increase linearly.
When there are five obstacles, the search space of Vtest A*
is 8.2% of the search space of plain A*, and the execution
time of Vtest A* is 15.2% of the execution time of plain A*.
These results show that the A* search with visibility
information visits a substantially less number of states
compared to plain A* search, and the performance of search
is more improved as the complexity of environment
increases. This is because the proposed method recognizes
the obstacles during the search and eliminates unnecessary
visits to the polygons near the obstacles. Visibility test time
is negligible compared to the time for searching a large
number of polygons, because the visibility test is
performed only when the search visits the state adjacent to
a vertex of an obstacle. In general, when a highly detailed
3D terrain represented with navigation mesh contains many
obstacles, Vtest A* will be very efficient. Fig. 8 shows how
much the search space and the execution time are reduced
by using Vtest A* as the number of obstacles increase.

Table 3. The number of expanded nodes as the number of

obstacles increases

Number of
obstacles A* Vtest A* Vtest A*

/ A*
1 1,216 216 17.8%
2 1,529 328 21.5%
3 3,254 349 10.7%
4 2,637 276 10.5%
5 4,349 356 8.2%

Table 4. The execution time (sec) for search as the number

of obstacles increases

A* Vtest A* Num. of
obstacles Total Total Vtest Search

Vtest A*
/ A*

1 1.9317 0.4286 0.1369 0.2917 22.2%
2 2.1283 0.5289 0.1905 0.3384 24.9%
3 4.0913 0.7855 0.3282 0.4573 19.2%
4 3.8652 0.6356 0.2437 0.3919 16.4%
5 5.9156 0.9021 0.3895 0.5126 15.2%

Fig. 8. The search space and execution time reduction

obtained by Vtest A* as the number of obstacles
changes

Reducing the Search Space for Pathfinding in Navigation Meshes by Using Visibility Tests

872

5. Conclusion

This paper proposed an efficient pathfinding method on

a 3D terrain represented with navigation meshes. When
path planning is performed on a highly detailed terrain, the
search can be inefficient due to the large search space. By
finding visible vertices of obstacles and defining heuristics
as a distance of the path that goes through such vertices,
we could reduce the search space by avoiding unnecessary
searching. The experiments show that the proposed method
outperformed the plain A* search in terms of both the
number of nodes visited and the execution time for
searching.

The proposed method finds the shortest path in a 2D
projected terrain, but does not guarantee the optimal path
in 3D. Finding an efficient method to get a near-optimal
path by combining terrain-specific factors such as height
with the visibility information would be the future research
direction of this work.

References

[1] H. Alt, M. Godau and S. Whitesides, “Universal 3-
dimensional visibility representations for graphs,”
Computational Geometry: Theory and Applications
(9), 1998.

[2] M. de Berg, M. van Kreveld, M. Overmas, and O.
Schwarzkorf, Computational Geometry-Algorithms
and Applications, Springer-Verlag, New York, 2000.

[3] G. Dehghani and H. Morady, “An Algorithm for
Visibility Graph Recognition on Planar Graphs,”
Proceedings of the ICFCC2009, 2009.

[4] F. Farnstorm, “Improving on Near-Optimality: More
Techniques for Building Navigation Meshes,” In:
Rabin, S. (eds.): AI Game Programming Wisdom 3,
Charles Rive Media, 2006.

[5] B. Gao, D. Xu, F. Zhang, and Y. Yao, “Constructing
Visibility Graph and Planning Optimal Path for
Inspection of 2D Workspace,” Proceedings of the
ICIS2009, 2009.

[6] D. H. Hale, G. M. Youngblood, and P. N. Dixit,
“Automatically-generated convex region
decomposition for real-time spatial agent navigation
in virtual worlds,” Proceedings of the fourth
Conference on Artificial Intelligence and Interactive
Digital Entertainment, 2008.

[7] D. Higgins, “Generic A* Pathfinding,” AI Game
Programming Wisdom, Charles River Media, 2002.

[8] G. Johnson, “Smoothing a Navigation Mesh path,” In:
Rabin, S. (eds.): AI Game Programming Wisdom 3,
Charles Rive Media, 2006.

[9] J.C. Latombe, Robot Motion Planning, Kluwer
Academic Publishers, 1991.

[10] C. McAnlis and J. Stewart, “Intrinsic Detail in
Navigation Mesh Generation,” In: Rabin, S. (eds.): AI

Game Programming Wisdom 4, Charles Rive Media,
2008.

[11] M. NouriBygi and M. Ghodsi, “3D Visibility and
Partial Visibility Complex,” Proceedings of the
ICCCSA2007, 2007.

[12] M. Pinter, “Towards more realistic pathfinding,”
Game Developer Magazine, April, 2001.

[13] S. Rabin, “A* speed optimizations and A* Aesthetic
Optimizations,” In: Deloura, M. (eds.): Game
Programming Gems, Charles Rive Media, 2000.

[14] N. Sariff and N. Buniyamin, “An Overview of
Autonomous Robot Path Planning Algorithms,”
Proceedings of the 4th Student Conference on
Research and Development, 2006.

[15] G. Snook, “Simplified 3D Movement and Path-
finding Using Navigation Meshes,” In: Deloura, M.
(eds.): Game Programming Gems, Charles Rive
Media, 2000.

[16] W. Sterren, “Terrain reasoning for 3D action games,”
Proceedings of the CGF-AI Conference, 2001.

[17] B. Stout, “The Basics of A* for Path Planning,” In:
Deloura, M. (eds.): Game Programming Gems,
Charles River Media, 2002.

[18] P. Tozour, “Search Space Representations,” In: Rabin,
S. (eds.): AI Game Programming Wisdom 2, Charles
Rive Media, 2004.

[19] P. Yap, “Grid-based Path-finding,” Lecture notes in
Artificial Intelligence, Vol. 2338, 2002.

[20] T. Young, “Expanded Geometry for Points-of-
Visibility Pathfinding,” In: Deloura, M. (eds.): Game
Programming Gems 2, Charles Rive Media, 2001.

Hyunil Kim He received his Ph.D.
degree from the Department of
Computer Engineering at Dongguk
University in 2004. He is currently a
professor in the Department of
Multimedia at Korea Nazarene
University. His research interests
include game AI, intelligent agent,

machine learning, and recommender systems.

Kyeonah Yu She received her B.S. and
M.S. degrees from the Department of
Control and Instrumentation
Engineering at Seoul National
University in 1986 and 1988,
respectively, and her Ph.D. degree from
the Department of Computer Science at
University of Southern California in

1995. She joined the Department of Computer Science at
Duksung Women’s University in 1996. Her current
research interests include robot algorithms, game AI, and
path planning.

Hyungil Kim, Kyeonah Yu and Juntae Kim

873

Juntae Kim He received his B.S.
degree from the Department of Control
and Instrumentation Engineering at
Seoul National University in 1986, and
his M.S. and Ph.D. degrees from the
Department of Electrical Engineering
at University of Southern California in
1990 and 1993, respectively. He is

currently a professor in the Department of Computer
Engineering at Dongguk University, and a member of the
Korean Institute of Information Scientists and Engineers,
Korea Business Intelligence Data Mining Society, IEEE
Computer Society, and Association of Computing
Machinery. His current research interests include
intelligent agent, data mining, and social network analysis.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for high quality pre-press printing. The PDF documents can be opened with Acrobat and Reader 5.0 and later. These settings require font embedding.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe7f6e521b5efa76840020005000440046002065876863ff0c5c065305542b66f49ad8768456fe50cf52068fa87387ff0c4ee575284e8e9ad88d2891cf76845370524d6253537030028be5002000500044004600206587686353ef4ee54f7f752800200020004100630072006f00620061007400204e0e002000520065006100640065007200200035002e00300020548c66f49ad87248672c62535f0030028fd94e9b8bbe7f6e89816c425d4c51655b574f533002>
 /CHT <FEFF4f7f752890194e9b8a2d5b9a5efa7acb76840020005000440046002065874ef65305542b8f039ad876845f7150cf89e367905ea6ff0c9069752865bc9ad854c18cea76845370524d521753703002005000440046002065874ef653ef4ee54f7f75280020004100630072006f0062006100740020548c002000520065006100640065007200200035002e0030002053ca66f465b07248672c4f86958b555f300290194e9b8a2d5b9a89816c425d4c51655b57578b3002>
 /KOR <FEFFace0d488c9c8c7580020d504b9acd504b808c2a40020d488c9c8c7440020c5bbae300020c704d5740020ace0d574c0c1b3c4c7580020c774bbf8c9c0b97c0020c0acc6a9d558c5ec00200050004400460020bb38c11cb97c0020b9ccb4e4b824ba740020c7740020c124c815c7440020c0acc6a9d558c2edc2dcc624002e0020c7740020c124c815c7440020c0acc6a9d558c5ec0020b9ccb4e000200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e0020c7740020c124c815c7440020c801c6a9d558b824ba740020ae00af340020d3ecd5680020ae30b2a5c7440020c0acc6a9d574c57c0020d569b2c8b2e4002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [545.000 394.000]
>> setpagedevice

