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Reducing the Search Space for Pathfinding in Navigation Meshes by 
Using Visibility Tests     

 
 

Hyungil Kim*, Kyeonah Yu** and Juntae Kim†  
 

Abstract – A navigation mesh (NavMesh) is a suitable tool for the representation of a three-
dimensional game world. A NavMesh consists of convex polygons covering free space, so the path can 
be found reliably without detecting collision with obstacles. The main disadvantage of a NavMesh is 
the huge state space. When the A* algorithm is applied to polygonal meshes for detailed terrain 
representation, the pathfinding can be inefficient due to the many states to be searched. In this paper, 
we propose a method to reduce the number of states searched by using visibility tests to achieve fast 
searching even on a detailed terrain with a large number of polygons. Our algorithm finds the visible 
vertices of the obstacles from the critical states and uses the heuristic function of A*, defined as the 
distance to the goal through such visible vertices. The results show that the number of searched states 
can be substantially reduced compared to the A* search with a straight-line distance heuristic.  
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1. Introduction 
 

An efficient pathfinding process is necessary to achieve 
autonomous movements of characters in a three-
dimensional (3D) environment, and A* algorithm is 
generally used for searching [7, 17]. In addition, elaborated 
terrain representation is required for the realistic movement 
of characters, and this increases the search time for path 
planning. Several methods for the representation of game 
space exist, such as regular grids, waypoint graphs, 
navigation meshes, and visibility graphs. The regular grid 
method [18, 19] decomposes the game space into tiles; the 
state space is the set of tiles and the operators are the 
moves to the next tile in each compass and each diagonal 
direction. This method is simple, but suffers from large 
state space. The waypoint graph consists of nodes and links 
manually placed by a level designer [16, 18]. There is a 
trade-off between the size of the search space and the path 
quality. The visibility graph (Vgraph) consists of a start 
node, a goal node, nodes placed at the vertices of the 
obstacles, and links connecting them, which include 
obstacle boundaries [3, 5, 11]. The strongest advantage of 
using Vgraph is the guarantee of the shortest path with the 
A* algorithm [9, 14]. The navigation mesh (NavMesh) 
decomposes a terrain as a set of convex polygons on a 
walkable space [6, 15, 18]. The cells are irregular, instead 
of regular grids, and they can represent the various 

properties of the terrain. A popular type is the triangle-
based NavMesh, where cells are represented by various 
triangles.  

Among the four representative methods, the NavMesh is 
the most preferred for representing a 3D game world 
because it can simplify the representation of 3D game 
space by a warped two-dimensional (2D) field. A 3D game 
world is often represented by the waypoint graph. However, 
such representation has many limitations due to the 
placement of the manual node: it is difficult to implement 
on a huge map or to share the intentions of the placement 
among people in different levels of the design process. 
Moreover, it is hard to apply the regular grid method and 
the Vgraph in a 3D game world without additional 
processing. Path planning can be more easily performed on 
a NavMesh by projecting the 3D surfaces onto a 2D space. 
The NavMesh, which can be generated automatically, is 
more flexible in representing a 3D surface. One drawback 
is that pathfinding on a NavMesh can be inefficient due to 
the large search space. This can be solved by generating a 
simplified NavMesh [10] based on the quadtree method or 
by simplifying an existing NavMesh by merging adjacent 
polygons [4]. However, methods based on NavMesh 
simplifications have limitation when the terrain is 
represented with an elaborated mesh of a large number of 
triangles to achieve more realistic movements.  

This paper proposes an efficient method to search the 
state space represented by a NavMesh. We incorporate the 
concept of the Vgraph into the NavMesh to reduce the 
search space with visibility tests, which increases the speed 
of searches even on an elaborated terrain with a large 
number of polygons. We first find the visible vertices of the 
obstacles from the current state and define the heuristic 
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function of A* as the distance to the goal through such 
vertices. With the proposed heuristic, the number of states 
visited decreases substantially compared to the plain search. 
The efficiency of the proposed algorithm is demonstrated 
through simulations with the plain A* and the A* with 
visibility tests, respectively. 

 
 
 

2. Pathfinding on a NavMesh 
 
A NavMesh is the 2D projection of a 3D space 

represented with a set of small convex polygons that 
comprise the geometry information, such as the inclination 
of the surface or the type of terrain. We can use 2D search 
for pathfinding once a terrain is represented by a NavMesh. 
This paper focuses on the A* search algorithm for 
pathfinding on the triangle-based NavMesh. 

 
2.1 NavMesh 

 
A NavMesh decomposes the walkable 3D terrain into a 

set of convex polygons. It should satisfy three conditions 
[15]. First, it must consist of triangles, each of which is 
contained only in a single plane. Second, all adjacent 
meshes should have two vertices and one side in common. 
Third, no two meshes should share a common plane. Fig. 1 
shows an example of a terrain with obstacles represented 
using a NavMesh. The NavMesh can be applied to various 
types of terrain structures. By modeling the NavMesh to be 
mutually exclusive of the static obstacles, the collision of 
characters to the obstacles can be easily detected by the 
examination of whether it reaches the boundary of the 
mesh.  

When a character moves on a mesh, the movement 
vector is projected onto the plane of the corresponding 
triangle, and a 2D algorithm checks the intersection of this 
vector and the sides of the triangle. The character will 
collide with an obstacle if the vector intersects with a side 
that is not shared with another triangle. 

 
2.2 A* Algorithm on a NavMesh 

 
The pathfinding on a NavMesh can be performed with 

the A* search algorithm. The state space in a NavMesh is 
the set of triangles, and the operators are the moves to the 
next triangles. In Fig. 1, the start and the goal states are the 
triangles that include the start node and the goal node, 
respectively. Three triangles – A, B, and C – around the 
start state are its child states. The cost from one state to its 
child state is defined as the distance from the center of the 
state to the center of the child state through the middle 
point of the sharing side. The evaluation function f(n) of a 
state n is the sum of the distance from the start state to state 
n and the heuristic value of the distance from the state n to 
the goal state. The most widely used heuristic in 

pathfinding is the Euclidean distance, which is defined as 
the straight-line distance between n and the goal state. The 
Euclidean distance heuristic is admissible. 

Fig. 1 shows an example path found by the A* search. 
The search result is a sequence of adjacent triangles that is 
indicated as the colored triangles. The dashed line indicates 
the trajectory connecting the centers of the adjacent 
triangles through the middle point of the sharing side. The 
actual movement trajectory can be made more straight and 
smooth by using various techniques [8, 12]; however, it is 
not shown in the figure. 

 

 
Fig. 1. An example of a terrain represented in a navigation 

mesh and the result of the search; the sequence of 
the shaded triangles is a path from the start node to 
the goal node 

 
 

3. Pathfinding with Visibility Tests 
 
Pathfinding on a NavMesh becomes inefficient when 

many triangles are used for fine granularity. This is because 
each triangle corresponds to a state in the state space search. 
A large number of states is sometimes visited by the search 
algorithm due to obstacles. This can be avoided if the 
algorithm utilizes the information that the shortest path 
must go through one of the visible vertices of the obstacles. 
This section explains the method of using the visibility 
information to reduce the size of the state space searched. 

 
3.1 Visibility tests 

 
Every visible vertex of polygonal obstacles can be 

reached by a straight line, and the shortest path between the 
start and the goal consists of visible edges - the edges 
between two vertices that can see each other. This set of 
visible edges is named by the visibility graph. The 
visibility graph is widely used for pathfinding in robot path 
planning and is recently applied for point-of-visibility 
pathfinding in computer games because it guarantees the 
shortest path [13, 20]. However, when the visibility graph 
is used directly in path-finding, it cannot use the detailed 
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information kept in every cell of a NavMesh because it 
provides only a raw connection between nodes. In this 
paper, the visibility information is used to compute a 
superior heuristic function for the A* algorithm while the 
search is performed on a NavMesh. The visibility is tested 
in critical states, including the start state, as A* search 
proceeds. The next section will explain how these critical 
states are determined.  

Finding all visible vertices from a point p is 
computationally expensive because every line connecting p 
and each vertex must be checked to see if it intersects with 
any obstacle edge. The time complexity is O(n2), where n 
is the number of vertices of the obstacles. We use the 
rotational sweepline algorithm for a rapid visibility test [2]. 
According to the rotational sweepline algorithm, as we 
sweep the plane in cyclic order, we can use the information 
of the previous test for the rest. In Fig. 2, the plane is swept 
by the half-line around p. 

 

 
Fig. 2. The visibility test process: v1, v3, v7 are the visible 

vertices from p; the whole plane is swept by the 
half-line around p in cyclic order 

 

 
Fig. 3. The binary search tree on the intersected edges; the 

leaves of the tree store the intersected edges in order  
 
The information about obstacle edges intersected by ρ is 

maintained in a binary search tree in order. The obstacle 
vertices are sorted in order of the clockwise angle and 
stored in set W before the sweep starts: W = {v7, v3, v6, v8, v5, 
v4, v2, v1}. The sweeping stops at every event (vertex) in W 
and checks whether it is visible from p or not. This can 
only be accomplished by checking the intersection between 
the line segment pvi and the edge of the leftmost leaf node 

of the binary search tree.  
For example, in Fig. 2, the second event is v3, and 

ρ intersects with the edges e8 and e7 before v3 and with the 
edges e1, e3, e8, and e7 after v3. This information is stored in 
the binary search tree (Fig. 3). The visibility of v3 from p 
can be easily verified by checking whether the line 
segment pv3 intersects with e8. Since pv3 does not intersect 
with e8, v3 is visible from p. The binary search tree is then 
updated by the deletion of all edges on the counter-
clockwise side of v3 and by the insertion of new edges on 
the clockwise side of v3. This sweeping process continues 
until ρ visits all the events in W. When there are n obstacle 
vertices, the number of events is n, the initial sorting takes 
O(nlogn) time, searching the leftmost edge in the tree takes 
O(logn), and the status update operations takes O(logn). 
Therefore, the overall time complexity is O(nlogn). 

 

 
Fig. 4. An example of a visibility test in a 3D terrain; the 

cube at the right is an obstacle 
 
In a 3D terrain, the visibility test can be done on a 2D 

projection of the mesh. In such case, the vertices found 
may not be actually visible, but reachable without changing 
the direction of movement [1]. Fig. 4 shows the result of 
the visibility test and the line drawn on the 3D surface. 

 
3.2 Integrating visibility information into the A* 

search 
 
The terrain is decomposed into cells in a NavMesh, each 

of which has meaningful information about the terrain. 
Therefore, we search cells on a NavMesh and check the 
visibility from a state whenever necessary to integrate the 
visibility information into the heuristic function, instead of 
constructing the whole visibility graph. The simplest 
admissible heuristic for pathfinding is the Euclidean 
distance between a state s and a goal G, d(s,G). This 
heuristic is admissible [9], and we modify it by integrating 
the visibility information as follows. 

We assume that the visible points (the visible vertices of 
the obstacles and a goal if visible) from a state s are v1, v2, 
…, vn. Since the shortest path to the goal must go through 
one of the visible points to avoid the obstacles, the new 
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heuristic function hv(s) can be defined as in (1).  
 

 1 1 2 2( ) min[ ( , ) ( , ), ( , ) ( , ),vh s d s v d v G d s v d v G= + +         
 ..., ( , ) ( , )]n nd s v d v G+         (1) 

 
The estimated distance to the goal from a state s is the 

distance of the shortest path among the paths from s to G 
through visible points. This new hv(s) is larger than the 
straight-line distance from s to the goal d(s,G), but it is 
smaller than the actual optimal distance h*(s) found on the 
NavMesh, which may consists of more line segments. This 
leads to the relation d(s,G) ≤ hv(s) ≤ h*(s). This implies that 
the proposed heuristic is more informed than the Euclidean 
distance heuristic and that the search algorithm using hv(s) 
visits less number of states. 

It is unnecessary to check the visibility for every state. 
As the search continues, the visibility information is passed 
to the selected child state, unless the search reaches a 
critical state that is adjacent to one of the visible points. We 
assume that s1 is selected after s, where s1 is not adjacent to 
any visible point from s. Because every cell is convex, 

there must be at least one child on the way to each visible 
point from s. The selected child s1 must be closer to a 
visible point than the parent s, but not on the straight line to 
it, which leads to the equation hv(s) ≤ hv(s1) + d(s,s1). 
Therefore, it is clear that the heuristic is monotone and 
admissible. When the search reaches one of the visible 
points, the visibility is retested. The new list of visible 
points is passed to its children and used to compute a 
heuristic value. The A* search algorithm with the visibility 
test is presented in Fig. 5. 

 
 

4. Simulation Results 
 
We implemented the A* algorithm with the visibility test 

using C++ and the OpenGL to support the theoretical 
results in the previous section. In the demos, 3D terrain and 
obstacles are modeled using the 3D Max. The mesh 
representing the terrain surface is converted into the 
OpenGL coordinate and used as a NavMesh. Fig. 6 shows 
examples of pathfinding on a 3D terrain. Each example has 
an obstacle, a starting point, and a goal point. The dot on 
the left side is the start point. The shaded area indicates the 
states (triangles) visited during the search from the start 
point to the goal point. Fig. 6(a) is the result of the A* 
search with the straight-line distance heuristic, and Fig. 
6(b) is the result of the A* search with the proposed 
heuristic using the visibility information. The figures show 
that the A* search with the proposed heuristic visits a less 
number of states compared to the original A* search. 

 

 
 

 
(a) A* with the straight-
line distance heuristic 

(b) A* with the heuristic 
using visibility tests 

Fig. 6. Comparison of the search areas in 3D terrain; the 
nodes expanded by the search are shaded 

 
We also performed simulations to compare the results 

quantitatively. We run the A* algorithm with the Euclidean 
distance heuristic (plain A*) and A* with the visibility test 
heuristic (Vtest A*) with two obstacles. We then compared 

 

 
Fig. 5. The A* search algorithm with the visibility test 
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both the number of nodes visited during the search and the 
execution time for various arrangements of obstacles. Fig. 
7 shows the case of two fully overlapped obstacles.  

Tables 1 and 2 show the results of running plain A* and 
Vtest A* as we increase the overlapping of two obstacles. 
The results show that, as the obstacles are overlapped more, 
the number of nodes visited and the execution time of plain 
A* rapidly increase due to the increased search space; 
however, those of Vtest A* does not increase much when 
they are compared to plain A*. When the obstacles are fully 
overlapped, the search space of Vtest A* is only 6.1% of 
the search space of plain A*, and the execution time of 
Vtest A* is 10.6% of the execution time of plain A*. The 
execution time of Vtest A* includes the visibility 
computation time in addition to the search time. Therefore, 
the execution time of Vtest A* is slightly higher than that of 
plain A* when there is no overlap between two obstacles 
(the start and the goal are visible to each other). This is due 
to the overhead of visibility tests. This overhead is minor 
compared to the search time, thus it minimally affects the 
total execution time.  

 

 
Fig. 7. An example of fully overlapped obstacles; the 

nodes expanded by A* are shaded 
 
 

Table 1. The number of expanded nodes as the 
arrangement of two obstacles changes 

Obstacles  
overlap A* Vtest A* Vtest A* 

/ A* 
No 141 141 100.0% 
1/3 562 163 29.0% 
2/3 1,120 173 15.4% 
Full 2,927 179 6.1% 

 
Table 2. The execution time (sec) for search as the 

arrangement of two obstacles changes 

A* Vtest A* Obstacles  
overlap Total Total Vtest Search 

Vtest A* 
/ A* 

No 0.1888 0.1964 0.0088 0.1876 104.0% 
1/3 0.7446 0.4276 0.2016 0.2260 57.4% 
2/3 1.8409 0.4966 0.2050 0.2916 27.0% 
Full 4.8401 0.5132 0.2081 0.3051 10.6% 

Tables 3 and 4 show the results of running plain A* and 
Vtest A* as we increase the number of obstacles. Since the 
search space and the execution time depend on the 
configuration of the obstacles, they do not increase linearly. 
When there are five obstacles, the search space of Vtest A* 
is 8.2% of the search space of plain A*, and the execution 
time of Vtest A* is 15.2% of the execution time of plain A*. 
These results show that the A* search with visibility 
information visits a substantially less number of states 
compared to plain A* search, and the performance of search 
is more improved as the complexity of environment 
increases. This is because the proposed method recognizes 
the obstacles during the search and eliminates unnecessary 
visits to the polygons near the obstacles. Visibility test time 
is negligible compared to the time for searching a large 
number of polygons, because the visibility test is 
performed only when the search visits the state adjacent to 
a vertex of an obstacle. In general, when a highly detailed 
3D terrain represented with navigation mesh contains many 
obstacles, Vtest A* will be very efficient. Fig. 8 shows how 
much the search space and the execution time are reduced 
by using Vtest A* as the number of obstacles increase.   

 
Table 3. The number of expanded nodes as the number of 

obstacles increases 

Number of 
obstacles  A* Vtest A* Vtest A* 

/ A* 
1 1,216 216 17.8% 
2 1,529 328 21.5% 
3 3,254 349 10.7% 
4 2,637 276 10.5% 
5 4,349 356 8.2% 

 
Table 4. The execution time (sec) for search as the number 

of obstacles increases 

A* Vtest A* Num. of 
obstacles Total Total Vtest Search

Vtest A* 
/ A* 

1 1.9317 0.4286 0.1369 0.2917 22.2% 
2 2.1283 0.5289 0.1905 0.3384 24.9% 
3 4.0913 0.7855 0.3282 0.4573 19.2% 
4 3.8652 0.6356 0.2437 0.3919 16.4% 
5 5.9156 0.9021 0.3895 0.5126 15.2% 

 

 
Fig. 8. The search space and execution time reduction 

obtained by Vtest A* as the number of obstacles 
changes 
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5. Conclusion 
 
This paper proposed an efficient pathfinding method on 

a 3D terrain represented with navigation meshes. When 
path planning is performed on a highly detailed terrain, the 
search can be inefficient due to the large search space. By 
finding visible vertices of obstacles and defining heuristics 
as a distance of the path that goes through such vertices, 
we could reduce the search space by avoiding unnecessary 
searching. The experiments show that the proposed method 
outperformed the plain A* search in terms of both the 
number of nodes visited and the execution time for 
searching.  

The proposed method finds the shortest path in a 2D 
projected terrain, but does not guarantee the optimal path 
in 3D. Finding an efficient method to get a near-optimal 
path by combining terrain-specific factors such as height 
with the visibility information would be the future research 
direction of this work.  
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