• 제목/요약/키워드: mesh networks

Search Result 377, Processing Time 0.033 seconds

Link-Disjoint Embedding of Complete Binary Trees in 3D-Meshes (3차원 메쉬에 대한 완전 이진트리의 링크 충돌없는 임베딩)

  • 이주영;이상규
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.30 no.7_8
    • /
    • pp.381-386
    • /
    • 2003
  • In this paper, we consider the problem of embedding complete binary trees into 3-dimensional meshes. The method of embedding a complete binary tree into 3-dimensional mesh with the link congestion two is considered in [1], and the embedding in [2] shows that a complete binary tree can be embedded into a ,3-dimensional mesh of expansion 1.27. The proposed embedding in this paper shows that a complete binary tree can be embedded into a 3-dimensional mesh of expansion approximately 1.125 with the link congestion one, using the dimensional ordered routing. Such method yields some improved features in terms of minimizing the link congestion or the expansion of embedding comparing to the previous results.

(A Scalable Multipoint-to-Multipoint Routing Protocol in Ad-Hoc Networks) (애드-혹 네트워크에서의 확장성 있는 다중점 대 다중점 라우팅 프로토콜)

  • 강현정;이미정
    • Journal of KIISE:Information Networking
    • /
    • v.30 no.3
    • /
    • pp.329-342
    • /
    • 2003
  • Most of the existing multicast routing protocols for ad-hoc networks do not take into account the efficiency of the protocol for the cases when there are large number of sources in the multicast group, resulting in either large overhead or poor data delivery ratio when the number of sources is large. In this paper, we propose a multicast routing protocol for ad-hoc networks, which particularly considers the scalability of the protocol in terms of the number of sources in the multicast groups. The proposed protocol designates a set of sources as the core sources. Each core source is a root of each tree that reaches all the destinations of the multicast group. The union of these trees constitutes the data delivery mesh, and each of the non-core sources finds the nearest core source in order to delegate its data delivery. For the efficient operation of the proposed protocol, it is important to have an appropriate number of core sources. Having too many of the core sources incurs excessive control and data packet overhead, whereas having too little of them results in a vulnerable and overloaded data delivery mesh. The data delivery mesh is optimally reconfigured through the periodic control message flooding from the core sources, whereas the connectivity of the mesh is maintained by a persistent local mesh recovery mechanism. The simulation results show that the proposed protocol achieves an efficient multicast communication with high data delivery ratio and low communication overhead compared with the other existing multicast routing protocols when there are multiple sources in the multicast group.

FENC: Fast and Efficient Opportunistic Network Coding in wireless networks

  • Pahlavani, Peyman;Derhami, Vali;Bidoki, Ali Mohammad Zareh
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.1
    • /
    • pp.52-67
    • /
    • 2011
  • Network coding is a newly developed technology that can cause considerable improvements in network throughput. COPE is the first network coding approach for wireless mesh networks and it is based on opportunistic Wireless Network Coding (WNC). It significantly improves throughput of multi-hop wireless networks utilizing network coding and broadcast features of wireless medium. In this paper we propose a new method, called FENC, for opportunistic WNC that improves the network throughput. In addition, its complexity is lower than other opportunistic WNC approaches. FENC utilizes division and conquer method to find an optimal network coding. The numerical results show that the proposed opportunistic algorithm improves the overall throughput as well as network coding approach.

A study on Dynamic Routing Protocol using Entropy-Doppler Topology (엔트로피-도플러 기법을 이용한 동적 라우팅 프로토콜에 관한 연구)

  • Chi, Sam-Hyun;Kim, Sun-Guk;Doo, Kyung-Min;Lee, Kang-Whan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2007.06a
    • /
    • pp.461-465
    • /
    • 2007
  • MANET(Mobile Ad hoc Networks) is free-mobility formation of mobile nodes in the wireless networks. Generally, wireless networks has two main type of structures which Tree and Mesh. These general structure is difficult to do which connectivity, redundancy transmit and network continuant. In this paper, we would suggest a new ODDMRP(Ontology Doppler effect-based Dynamic Multicast Routing Protocol) technology for effective MANET which Ontology Doppler effect-based. ODDMRP consist of the parameters for node entropy when using Doppler effect which moving position of round node, moving time, and distribution chart in velocity also it express distance of destination node and property structure organization. It would be used to provide improvement to keep the optimal communication routing and also could be improve network stabilization, and continuation durability of connectivity.

  • PDF

무선 메쉬 네트워크의 보안 위협 및 공격 분석

  • Gang, Nam-Hui
    • Information and Communications Magazine
    • /
    • v.29 no.8
    • /
    • pp.51-56
    • /
    • 2012
  • 본고에서는 적용의 유연성과 비용 효율의 장점으로 다양한 커뮤니티 네트워크 기술로 고려되는 무선 메쉬 네트워크(WMN: Wireless Mesh Networks)에서 고려해야 하는 보안 위협을 다룬다. 특히, WMN를 구성하는 무선 전송 계층과 인터넷 (IP) 계층에서 발생할 수 있는 보안 취약점과 공격의 예를 기술한다.

Empirical Evaluation of Wireless Mesh Network Equipments (무선 메쉬 네트워크 장비의 실험적인 성능 검증)

  • Lee, Ok-Hwan;Kim, Seong-Kwan;Lee, Hee-Young;Choi, Sung-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.9B
    • /
    • pp.760-766
    • /
    • 2008
  • As a backbone network, wireless mesh network (WMN) aims to provide reliable high throughput network connectivity to wireless users. Recent research has focused on routing and channel allocation to increase the capacity of wireless mesh backbones. Wireless mesh networking is an attractive solution for home, community, and enterprise networks as it is a self-configuring, instantly deployable, and lowcost networking system. In this paper, we empirically evaluate and analyze charateristic of WMN to establish WMN testbed by measurement. We use laptops and net4826 Soekris board widely used. Soekris boards are equipped with one network interface card (NIC) or above in our measurements. We also use paket generator, routing demon tools and so on. Throughout this measurements, we show limitation of Soekris board and software we use, and suggest guideline to establish WMN.

Tactical Service Mesh for Intelligent Traffic QoS Coordination over Future Tactical Network (미래 전술망의 지능적 트래픽 QoS 조율을 위한 전술 서비스 메쉬)

  • Kang, Moonjoong;Shin, Jun-Sik;Park, Juman;Park, Chan Yi;Kim, JongWon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.369-381
    • /
    • 2019
  • As tactical networks are gradually shifting toward IP-based flexible operation for diversified battlefield services, QoS(Quality-of-Service) coordination for service differentiation becomes essential to overcome the heterogeneous and scarce networking resources limitations. QoS coordination for tactical network traffic should be able to monitor and react the dynamic changes in underlying network topology and service priorities. In this paper, by adopting the emerging cloud-native service mesh concept into tactical network context, we study the feasibility of intelligent QoS coordination by employing tactical service mesh(TSM) as an additional layer to support enhanced traffic quality monitoring and control. The additional TSM layer can leverage distributed service-mesh proxies at tactical mesh WAN(Wide Area Network) nodes so that service-aware differentiated QoS coordination can be effectively designed and integrated with TSM-assisted traffic monitoring and control. Also, by validating the feasibility of TSM layer for QoS coordination with miniaturized experimental setup, we show the potential of the proposed approach with several approximated battlefield traffics over a simulated TSM-enabled tactical network.