• Title/Summary/Keyword: mesh merging

Search Result 20, Processing Time 0.029 seconds

RANS Simulation of a Tip-Leakage Vortex on a Ducted Marine Propulsor

  • Kim, Jin;Eric Peterson;Frederick Stern
    • Journal of Ship and Ocean Technology
    • /
    • v.8 no.1
    • /
    • pp.10-30
    • /
    • 2004
  • High-fidelity RANS simulations are presented for a ducted marine propulsor, including verification & validation (V&V) using available experimental fluid dynamics (EFD) data. CFDSHIP-IOWA is used with $\textsc{k}-\omega$ turbulence model and extensions for relative rotating coordinate system and Chimera overset grids. The mesh interpolation code PEGASUS is used for the exchange of the flow information between the overset grids. Intervals V&V for thrust, torque, and profile averaged radial velocity just downstream of rotor tip are reasonable in comparison with previous results. Flow pattern displays interaction and merging of tip-leakage and trailing edge vortices. In interaction region, multiple peaks and vorticity are smaller, whereas in merging region, better agreement with EFD. Tip-leakage vortex core position, size, circulation, and cavitation patterns for $\sigma=5$ also show a good agreement with EFD, although vortex core size is larger and circulation in interaction region is smaller.

Triangular Mesh Segmentation Based On Surface Normal (표면 법선 기반의 삼각형 메쉬 영역화 기법)

  • Kim, Dong-Hwan;Yun, Il-Dong;Lee, Sang-Uk
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.39 no.2
    • /
    • pp.22-29
    • /
    • 2002
  • This paper presents an algorithm for segmentation of 3D triangular mesh data. The proposed algorithm uses iterative merging of adjacent triangle pairs based on the orientation of triangles. The surface is segmented into patches, where each patch has a similar normal property Thus, each region can be approximated to planar patch and its boundaries have perceptually important geometric information of the entire mesh model. The experimental results show that the Proposed algorithm is peformed efficiently.

Object Analysis on Outdoor Environment Using Multiple Features for Autonomous Navigation Robot (자율주행 로봇을 위한 다중 특징을 이용하여 외부환경에서 물체 분석)

  • Kim, Dae-Nyeon;Jo, Kang-Hyun
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.5
    • /
    • pp.651-662
    • /
    • 2010
  • This paper describes a method to identify objects for autonomous navigation of an outdoor mobile robot. To identify objects, the robot recognizes the object from an image taken by moving robot on outdoor environment. As a beginning, this paper presents the candidates for a segment of region to building of artificial object, sky and trees of natural objects. Then we define their characteristics individually. In the process, we segment the regions of the objects included by preprocessing using multiple features. Multiple features are HSI, line segments, context information, hue co-occurrence matrix, principal components and vanishing point. An analysis of building identifies the geometrical properties of building facet such as wall region, windows and entrance. The building as intersection in vertical and horizontal line segment of vanishing point extracts the mesh. The wall region of building detect by merging the mesh of the neighbor parallelograms that have similar colors. The property estimates the number of story and rooms in the same floors by merging skewed parallelograms of the same color. We accomplish the result of image segmentation using multiple features and the geometrical properties analysis of object through experiments.

Mesh Segmentation With Geodesic Means Clustering of Sharp Vertices (첨예정점의 측지거리 평균군집화를 이용한 메쉬 분할)

  • Park, Young-Jin;Park, Chan;Li, Wei;Ha, Jong-Sung;Yoo, Kwan-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.5
    • /
    • pp.94-103
    • /
    • 2008
  • In this paper, we adapt the $\kappa$-means clustering technique to segmenting a given 3D mesh. In order to avoid the locally minimal convergence and speed up the computing time, first we extract sharp vertices from the mesh by analysing its curvature and convexity that respectively reflect the local and global geometric characteristics from the viewpoint of cognitive science. Next the sharp vertices are partitioned into $\kappa$ clusters by iterated converging with the $\kappa$-means clustering method based on the geodesic distance instead of the Euclidean distance between each pair of the sharp vertices. For obtaining the effective result of $\kappa$-means clustering method, it is crucial to assign an initial value to $\kappa$ appropriately. Hence, we automatically compute a reasonable number of clusters as an initial value of $\kappa$. Finally the mesh segmentation is completed by merging other vertices except the sharp vertices into the nearest cluster by geodesic distance.

Dynamic Survivable Routing for Shared Segment Protection

  • Tapolcai, Janos;Ho, Pin-Han
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.198-209
    • /
    • 2007
  • This paper provides a thorough study on shared segment protection (SSP) for mesh communication networks in the complete routing information scenario, where the integer linear program (ILP) in [1] is extended such that the following two constraints are well addressed: (a) The restoration time constraint for each connection request, and (b) the switching/merging capacity constraint at each node. A novel approach, called SSP algorithm, is developed to reduce the extremely high computation complexity in solving the ILP formulation. Basically, our approach is to derive a good approximation on the parameters in the ILP by referring to the result of solving the corresponding shared path protection (SPP) problem. Thus, the design space can be significantly reduced by eliminating some edges in the graphs. We will show in the simulation that with our approach, the optimality can be achieved in most of the cases. To verify the proposed formulation and investigate the performance impairment in terms of average cost and success rate by the additional two constraints, extensive simulation work has been conducted on three network topologies, in which SPP and shared link protection (SLP) are implemented for comparison. We will demonstrate that the proposed SSP algorithm can effectively and efficiently solve the survivable routing problem with constraints on restoration time and switching/merging capability of each node. The comparison among the three protection types further verifies that SSP can yield significant advantages over SPP and SLP without taking much computation time.

Mesh Simplification using Vertex Replacement based on Color and Curvature (색상 및 곡률기반 정점 재조정을 이용한 메쉬 간략화)

  • Choi, Han-Kyun;Kang, Eu-Cheol;Kim, Hyun-Soo;Lee, Kwan-Heng
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2005.11a
    • /
    • pp.1385-1388
    • /
    • 2005
  • 최근 3 차원 스캐닝(Scanning) 기술의 발달로 형상 및 색상 정보 데이터를 동시에 획득할 수 있게 되었다. 특히 한번의 측정으로 다량의 데이터를 확보할 수 있기 때문에 3 차원 데이터의 정합(Registration) 및 병합(Merging) 과정에서 계산량이 증가하게 된다. 또한 정합과 병합 후의 대용량 데이터 자체로는 3 차원 모델의 저장, 전송, 처리 및 렌더링(Rendering) 등의 과정에서 어려움이 있다. 따라서 모델의 기하 정보와 색상, 질감, 곡률 등의 속성 정보를 유지하면서 데이터의 양을 감소시키는 메쉬 간략화 기술이 필요하다. 현재 널리 쓰이는 이차 오차 척도(Quadric Error Metric) 방법으로 메쉬를 극심하게 감소하게 되면 오차가 누적되어 기하 정보 및 속성 정보가 소실된다. 본 연구에서는 이를 방지하기 위해 이차 오차 척도 감소화 과정에서 곡률과 색상 기반의 정점 재조정 방법을 제안한다.

  • PDF

A Hydrodynamical Simulation of the Off-Axis Cluster Merger Abell 115

  • Lee, Wonki;Kim, Mincheol;Jee, Myungkook James
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2018
  • A merging galaxy cluster is a useful laboratory to study many interesting astrophysical processes such as intracluster medium heating, particle acceleration, and possibly dark matter self-interaction. However, without understanding the merger scenario of the system, interpretation of the observational data is severely limited. In this work, we focus on the off-axis binary cluster merger Abell 115, which possesses many remarkable features. The cluster has two cool cores in X-ray with disturbed morphologies and a single giant radio relic just north of the northern X-ray peak. In addition, there is a large discrepancy (almost a factor of 10) in mass estimate between weak lensing and dynamical analyses. To constrain the merger scenario, we perform a hydrodynamical simulation with the adaptive mesh refinement code RAMSES. We use the multi-wavelength observational data including X-ray, weak-lensing, radio, and optical spectroscopy to constrain the merger scenario. We present detailed comparisons between the simulation results and these multi-wavelength observations.

  • PDF

Three-dimensional Digital Restoration and Surface Depth Modeling for Shape Analysis of Stone Cultural Heritage: Haeundae Stone Inscription (석조문화유산의 형상분석을 위한 3차원 디지털복원과 표면심도 모델링:해운대 석각을 중심으로)

  • Jo, Young-Hoon;Lee, Chan-Hee
    • Journal of Conservation Science
    • /
    • v.28 no.1
    • /
    • pp.87-94
    • /
    • 2012
  • This study was focused on digital restoration and surface depth modeling applying the three-dimensional laser scanning system of the Haeundae Stone Inscription. Firstly, the three-dimensional digital restoration carried out acquiring of point cloud using wide range and precision scanner, thereafter registering, merging, filtering, polygon mesh and surveyed map drawing. In particular, stroke of letters, inscribed depth and definition appearing the precision scanning polygon was outstanding compared with ones of the wide range polygon. The surface depth modeling completed through separation from polygon, establishment of datum axis, selection of datum point, contour mapping and polygon merging. Also, relative inscribed depth (5~17mm) and outline by the depth modeling was well-defined compared with photograph and polygon image of the inscription stone. The digital restoration technology merging wide range and precision scanning restored the total and detailed shape of the Stone Inscription quickly and accurately. In addition, the surface depth modeling visibly showed unclear parts from naked eye and photograph. In the future, various deteriorations and surrounding environment change of the Stone Inscription will be numerically analyze by periodic monitoring.

Static behavior of a laterally loaded guardrail post in sloping ground by LS-DYNA

  • Woo, Kwang S.;Lee, Dong W.;Yang, Seung H.;Ahn, Jae S.
    • Geomechanics and Engineering
    • /
    • v.15 no.5
    • /
    • pp.1101-1111
    • /
    • 2018
  • This study aims to present accurate soil modeling and validation of a single roadside guardrail post as well as a single concrete pile installed near cut slopes or compacted sloping embankment. The conventional Winkler's elastic spring model and p-y curve approach for horizontal ground cannot directly be applied to sloping ground where ultimate soil resistance is significantly dependent on ground inclination. In this study, both grid-based 3-D FE model and particle-based SPH (smoothed particle hydrodynamics) model available in LS-DYNA have been adopted to predict the static behavior of a laterally loaded guardrail post. The SPH model has potential to eliminate any artificial soil stiffness due to the deterioration of the node-connected Lagrangian soil mesh. For this purpose, this study comprises two parts. Firstly, only 3-D FE modeling has been tested to show the numerical validity for a single concrete pile in sloping ground using Mohr-Coulomb material. However, this material option cannot be implemented for SPH elements. Nevertheless, Mohr-Coulomb model has been used since this material model requires six input soil data that can be obtained from the comparative papers in literatures. Secondly, this work is extended to compute the lateral resistance of a guardrail post located near the slope using the hybrid approach that combines Lagrange FE elements and SPH elements by the suitable node-merging option provided by LS-DYNA. For this analysis, the FHWA soil material developed for application to road-base soils has been used and also allows the application of SPH element.

Automatic Generation of 3D Face Model from Trinocular Images (Trinocular 영상을 이용한 3D 얼굴 모델 자동 생성)

  • Yi, Kwang-Do;Ahn, Sang-Chul;Kwon, Yong-Moo;Ko, Han-Seok;Kim, Hyoung-Gon
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.7
    • /
    • pp.104-115
    • /
    • 1999
  • This paper proposes an efficient method for 3D modeling of a human face from trinocular images by reconstructing face surface using range data. By using a trinocular camera system, we mitigated the tradeoff between the occlusion problem and the range resolution limitation which is the critical limitation in binocular camera system. We also propose an MPC_MBS (Matching Pixel Count Multiple Baseline Stereo) area-based matching method to reduce boundary overreach phenomenon and to improve both of accuracy and precision in matching. In this method, the computing time can be reduced significantly by removing the redundancies. In the model generation sub-pixel accurate surface data are achieved by 2D interpolation of disparity values, and are sampled to make regular triangular meshes. The data size of the triangular mesh model can be controlled by merging the vertices that lie on the same plane within user defined error threshold.

  • PDF