• 제목/요약/키워드: mesenchymal

검색결과 1,127건 처리시간 0.031초

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

  • Kim, Eun Young;Lee, Kyung-Bon;Kim, Min Kyu
    • BMB Reports
    • /
    • 제47권3호
    • /
    • pp.135-140
    • /
    • 2014
  • The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.

Global Proteomic Analysis of Mesenchymal Stem Cells Derived from Human Embryonic Stem Cells via Connective Tissue Growth Factor Treatment under Chemically Defined Feeder-Free Culture Conditions

  • Seo, Ji-Hye;Jeon, Young-Joo
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권1호
    • /
    • pp.126-140
    • /
    • 2022
  • Stem cells can be applied usefully in basic research and clinical field due to their differentiation and self-renewal capacity. The aim of this study was to establish an effective novel therapeutic cellular source and create its molecular expression profile map to elucidate the possible therapeutic mechanism and signaling pathway. We successfully obtained a mesenchymal stem cell population from human embryonic stem cells (hESCs) cultured on chemically defined feeder-free conditions and treated with connective tissue growth factor (CTGF) and performed the expressive proteomic approach to elucidate the molecular basis. We further selected 12 differentially expressed proteins in CTGF-induced hESC-derived mesenchymal stem cells (C-hESC-MSCs), which were found to be involved in the metabolic process, immune response, cell signaling, and cell proliferation, as compared to bone marrow derived-MSCs(BM-MSCs). Moreover, these up-regulated proteins were potentially related to the Wnt/β-catenin pathway. These results suggest that C-hESC-MSCs are a highly proliferative cell population, which can interact with the Wnt/β-catenin signaling pathway; thus, due to the upregulated cell survival ability or downregulated apoptosis effects of C-hESC-MSCs, these can be used as an unlimited cellular source in the cell therapy field for a higher therapeutic potential. Overall, the study provided valuable insights into the molecular functioning of hESC derivatives as a valuable cellular source.

Comparative characteristic study from bone marrow-derived mesenchymal stem cells

  • Purwaningrum, Medania;Jamilah, Nabila Syarifah;Purbantoro, Steven Dwi;Sawangmake, Chenphop;Nantavisai, Sirirat
    • Journal of Veterinary Science
    • /
    • 제22권6호
    • /
    • pp.74.1-74.13
    • /
    • 2021
  • Tissue engineering has been extensively investigated and proffered to be a potential platform for novel tissue regeneration. The utilization of mesenchymal stem cells (MSCs) from various sources has been widely explored and compared. In this regard, MSCs derived from bone marrow have been proposed and described as a promising cell resource due to their high yield of isolated cells with colony-forming potential, self-renewal capacity, MSC surface marker expression, and multi-lineage differentiation capacities in vitro. However, there is evidence for bone marrow MSCs (BM-MSCs) both in vitro and in vivo from different species presenting identical and distinct potential stemness characteristics. In this review, the fundamental knowledge of the growth kinetics and stemness properties of BM-MSCs in different animal species and humans are compared and summarized. Finally, to provide a full perspective, this review will procure results of current information studies focusing on the use of BM-MSCs in clinical practice.

Development of an effective dissociation protocol for isolating mesenchymal stem cells from bovine intermuscular adipose tissues

  • Jeong Min Lee;Hyun Lee;Seung Tae Lee
    • 한국동물생명공학회지
    • /
    • 제38권1호
    • /
    • pp.10-16
    • /
    • 2023
  • Intermuscular fat is essential for enhancing the flavor and texture of cultured meat. Mesenchymal stem cells derived from intermuscular adipose tissues are a source of intermuscular fat. Therefore, as a step towards developing a platform to derive intermuscular fat from mesenchymal stem cells (MSCs) for insertion between myofibrils in cultured beef, an advanced protocol of intermuscular adipose tissue dissociation effective to the isolation of MSCs from intermuscular adipose tissues was developed in cattle. To accomplish this, physical steps were added to the enzymatic dissociation of intermuscular adipose tissues, and the MSCs were established from primary cells dissociated with physical step-free and step-added enzymatic dissociation protocols. The application of a physical step (intensive shaking up) at 5 minutes intervals during enzymatic dissociation resulted in the greatest number of primary cells derived from intermuscular adipose tissues, showed effective formation of colony forming units-fibroblasts (CFU-Fs) from the retrieved primary cells, and generated MSCs with no increase in doubling time. Thus, this protocol will contribute to the stable supply of good quality adipose-derived mesenchymal stem cells (ADMSCs) as a fat source for the production of marbled cultured beef.

In Vitro Differentiation of Mesenchymal Progenitor Cells Derived from Porcine Umbilical Cord Blood

  • Kumar, Basavarajappa Mohana;Yoo, Jae-Gyu;Ock, Sun-A;Kim, Jung-Gon;Song, Hye-Jin;Kang, Eun-Ju;Cho, Seong-Keun;Lee, Sung-Lim;Cho, Jae-Hyeon;Balasubramanian, Sivasankaran;Rho, Gyu-Jin
    • Molecules and Cells
    • /
    • 제24권3호
    • /
    • pp.343-350
    • /
    • 2007
  • Mesenchymal stem/progenitor cells (MPCs) were isolated from porcine umbilical cord blood (UCB) and their morphology, proliferation, cell cycle status, cell-surface antigen profile and expression of hematopoietic cytokines were characterized. Their capacity to differentiate in vitro into osteocytes, adipocytes and chondrocytes was also evaluated. Primary cultures of adherent porcine MPCs (pMPCs) exhibited a typical fibroblast-like morphology with significant renewal capacity and proliferative ability. Subsequent robust cell growth was indicated by the high percentage of quiescent (G0/G1) cells. The cells expressed the mesenchymal surface markers, CD29, CD49b and CD105, but not the hematopoietic markers, CD45 and CD133 and synthesized hematopoietic cytokines. Over 21 days of induction, the cells differentiated into osteocytes adipocytes and chondrocytes. The expression of lineage specific genes was gradually upregulated during osteogenesis, adipogenesis and chondrogenesis. We conclude that porcine umbilical cord blood contains a population of MPCs capable of self-renewal and of differentiating in vitro into three classical mesenchymal lineages.

하악골체부에 발생한 간엽성 연골육종: 증례보고 (MESENCHYMAL CHONDROSARCOMA ON THE MANDIBULAR BODY: A CASE REPORT)

  • 변준호;최문정;이종실;노규진;김종렬;박봉욱
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권6호
    • /
    • pp.653-656
    • /
    • 2008
  • Mesenchymal chondrosarcoma is a rare malignant tumor of bone and soft tissue. This aggressive form of chondrosarcoma represents only 3% to 9% of all chondrosarcomas. This neoplasm is characterized by sheets or clusters of undifferentiated spindle or round cells surrounding discrete nodules of well-differentiated cartilage. We experienced a case of mesenchymal chondrosarcoma on mandibular body. Two years ago, the patient had been treated the intrabony cystic lesion on mandiblular left body. At that time, cartilage portion was not detected in the cystic specimen. Two years after cyst enucleation, the recurred large neoplasm in the mandibular left body was noted, and it was diagnosed as 4.5 cm sized mesenchymal chondrosarcoma. The mandibular tumor was widely resected and rigid-plate and cervical musculocutaneous flap were used for reconstruction of resected bone and soft tissues. No complications and recurrence were noted for 6 months postoperatively.

Characterization of human cardiac mesenchymal stromal cells and their extracellular vesicles comparing with human bone marrow derived mesenchymal stem cells

  • Kang, In Sook;Suh, Joowon;Lee, Mi-Ni;Lee, Chaeyoung;Jin, Jing;Lee, Changjin;Yang, Young Il;Jang, Yangsoo;Oh, Goo Taeg
    • BMB Reports
    • /
    • 제53권2호
    • /
    • pp.118-123
    • /
    • 2020
  • Cardiac regeneration with adult stem-cell (ASC) therapy is a promising field to address advanced cardiovascular diseases. In addition, extracellular vesicles (EVs) from ASCs have been implicated in acting as paracrine factors to improve cardiac functions in ASC therapy. In our work, we isolated human cardiac mesenchymal stromal cells (h-CMSCs) by means of three-dimensional organ culture (3D culture) during ex vivo expansion of cardiac tissue, to compare the functional efficacy with human bone-marrow derived mesenchymal stem cells (h-BM-MSCs), one of the actively studied ASCs. We characterized the h-CMSCs as CD90low, c-kitnegative, CD105positive phenotype and these cells express NANOG, SOX2, and GATA4. To identify the more effective type of EVs for angiogenesis among the different sources of ASCs, we isolated EVs which were derived from CMSCs with either normoxic or hypoxic condition and BM-MSCs. Our in vitro tube-formation results demonstrated that the angiogenic effects of EVs from hypoxia-treated CMSCs (CMSC-Hpx EVs) were greater than the well-known effects of EVs from BM-MSCs (BM-MSC EVs), and these were even comparable to human vascular endothelial growth factor (hVEGF), a potent angiogenic factor. Therefore, we present here that CD90lowc-kitnegativeCD105positive CMSCs under hypoxic conditions secrete functionally superior EVs for in vitro angiogenesis. Our findings will allow more insights on understanding myocardial repair.

간의 중간엽 과오종 (Mesenchymal Hamartoma of the Liver)

  • 허걸;김대연;김기홍;정성은;이성철;박귀원;김우기
    • Advances in pediatric surgery
    • /
    • 제7권1호
    • /
    • pp.31-36
    • /
    • 2001
  • Mesenchymal hamartoma of the liver is a rare benign tumor, usually presenting in early childhood, Five children with mesenchymal hamartoma of the liver pathologically verified at Seoul National University Children's Hospital between 1978 and 2000 were analyzed retrospectively. There were two girls and three boys, and their mean age at the operation was 16.0months (range, 4-32 months). Three patients presented with abdominal distension. A patient was detected incidentally, and another was detected by prenatal ultrasongraphic examination. Tumor size ranged from $10{\times}8.5cm$ to $34{\times}29cm$. Three tumors were located in the right lobe and two in the left lobe. Four cases underwent complete surgical resection, and the other one underwent incomplete surgical resection and marsupialization. Recurrence or malignant transformation was not noted. Five patients survived without evidence of disease for 35, 36, 38, 142 and 228 months. In conclusion, although mesenchymal hamartoma of the liver is benign lesion. it may be confused. and mixed with embryonal sarcoma. A recent report showed recurrence or malignant transformation after partial excision of the tumor. Therefore. complete excision of the tumor with surrounding normal liver tissue is recommended.

  • PDF

Epithelial-mesenchymal Transition and Its Role in the Pathogenesis of Colorectal Cancer

  • Zhu, Qing-Chao;Gao, Ren-Yuan;Wu, Wen;Qin, Huan-Long
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권5호
    • /
    • pp.2689-2698
    • /
    • 2013
  • Epithelial-to-mesenchymal transition (EMT) is a collection of events that allows the conversion of adherent epithelial cells, tightly bound to each other within an organized tissue, into independent fibroblastic cells possessing migratory properties and the ability to invade the extracellular matrix. EMT contributes to the complex architecture of the embryo by permitting the progression of embryogenesis from a simple single-cell layer epithelium to a complex three-dimensional organism composed of both epithelial and mesenchymal cells. However, in most tissues EMT is a developmentally restricted process and fully differentiated epithelia typically maintain their epithelial phenotype. Recently, elements of EMT, specially the loss of epithelial markers and the gain of mesenchymal markers, have been observed in pathological states, including epithelial cancers. Increasing evidence has confirmed its presence in human colon during colorectal carcinogenesis. In general, chronic inflammation is considered to be one of the causes of many human cancers including colorectal cancer(CRC). Accordingly, epidemiologic and clinical studies indicate that patients affected by ulcerative colitis and Crohn's disease, the two major forms of inflammatory bowel disease, have an increased risk of developing CRC. A large body of evidence supports roles for the SMAD/STAT3 signaling pathway, the NF-kB pathway, the Ras-mitogenactivated protein kinase/Snail/Slug and microRNAs in the development of colorectal cancers via epithelial-tomesenchymal transition. Thus, EMT appears to be closely involved in the pathogenesis of colorectal cancer, and analysis refered to it can yield novel targets for therapy.

Chondrogenesis of Mesenchymal Stem Cell Derived form Canine Adipose Tissue

  • Lee, Byung-Joo;Wang, Soo-Geun;Seo, Cheol-Ju;Lee, Jin-Chun;Jung, Jin-Sup;Lee, Ryang-Hwa
    • 대한음성언어의학회:학술대회논문집
    • /
    • 대한음성언어의학회 2003년도 제19회 학술대회
    • /
    • pp.183-183
    • /
    • 2003
  • Background and Objectives : Cartilage reconstruction is one of medical issue in otolaryngology. Tissue engineering is presently being utilized in part of cartilage repair. Sources of cells for tissue engineering are chondrocyte from mature cartilage and bone marrow mesenchymal stem cells that are able to differentiate into chondrocyte. Recent studies have shown that adipose tissue have mesenchymal stem cells which can differentiate into adipogenic, chondrogenic myogenic osteogenic cells and neural cell in vitro. In this study, we have examined chondrogenic potential of the canine adipose tissue-derived mesenchymal stem cell(ATSC). Materials and Methods : We harvested canine adipose tissue from inguinal area. ATSCs were enzymatically released from canine adipose tissue. Under appropriate culture conditions, ATSCs were induced to differentiate into the chondrocyte lineages using micromass culture technique. We used immunostain to type II collagen and toluidine blue stain to confirm chondrogenic differentiation of ATSCs. Results : We could isolate ATSCs from canine adipose tissue. ATSCs expressed CD29 and CD44 which are specific surface markers of mesenchymal stem cell. ATSCs differentiated into micromass that has positive response to immunostain of type II collagen and toluidine blue stain. Conclusion : In vitro, ATSCs differentiated into cells that have characteristic cartilage matrix molecules in the presence of lineage-specific induction factors. Adipose tissue may represent an alternative source to bone marrow-derived MSCs.

  • PDF