Browse > Article
http://dx.doi.org/10.5483/BMBRep.2014.47.3.289

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy  

Kim, Eun Young (Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University)
Lee, Kyung-Bon (Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University)
Kim, Min Kyu (Laboratory of Animal Reproduction and Physiology, Department of Animal Science and Biotechnology, College of Agriculture and Life Science, Chungnam National University)
Publication Information
BMB Reports / v.47, no.3, 2014 , pp. 135-140 More about this Journal
Abstract
The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, including the possibility of noninvasive isolation, multipotency, self-renewal, low immunogenicity, anti-inflammatory and nontumorigenicity properties, and minimal ethical problem. The AF-MSCs and AM-MSCs may be appropriate sources of mesenchymal stem cells for regenerative medicine, as an alternative to embryonic stem cells (ESCs). Recently, regenerative treatments such as tissue engineering and cell transplantation have shown potential in clinical applications for degenerative diseases. Therefore, amnion and MSCs derived from amnion can be applied to cell therapy in neuro-degeneration diseases. In this review, we will describe the potential of AM-MSCs and AF-MSCs, with particular focus on cures for neuronal degenerative diseases.
Keywords
Amniotic fluid; Amniotic membrane; Mesenchymal stem cell; Neuronal disease; Regeneration therapy;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Sun, N. Z. and Ji, H. S. (2009) In vitro differentiation of human placenta-derived adherent cells into insulin-producing cells. J. Int. Med. Res. 37, 400-406.   DOI
2 Li, R. D., Deng, Z. L., Hu, N., Liang, X., Liu, B., Luo, J., Chen, L., Yin, L., Luo, X., Shui, W., He, T. C. and Huang, W. (2012) Biphasic effects of TGFbeta1 on BMP9-induced osteogenic differentiation of mesenchymal stem cells. BMB Rep. 45, 509-514.   DOI   ScienceOn
3 Toda, A., Okabe, M., Yoshida, T. and Nikaido, T. (2007) The potential of amniotic membrane/amnion-derived cells for regeneration of various tissues. J. Pharmacol. Sci. 105, 215-228.   DOI   ScienceOn
4 Evans, M. J. and Kaufman, M. H. (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292, 154-156.   DOI   ScienceOn
5 Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S. and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145-1147.   DOI   ScienceOn
6 Amit, M., Margulets, V., Segev, H., Shariki, K., Laevsky, I., Coleman, R. and Itskovitz-Eldor, J. (2003) Human feeder layers for human embryonic stem cells. Biol. Reprod. 68, 2150-2156.   DOI
7 De Coppi, P., Bartsch, G. Jr., Siddiqui, M. M., Xu, T., Santos, C. C., Perin, L., Mostoslavsky, G., Serre, A. C., Snyder, E. Y., Yoo, J. J., Furth, M. E., Soker, S. and Atala, A. (2007) Isolation of amniotic stem cell lines with potential for therapy. Nat. Biotechnol. 25, 100-106.   DOI   ScienceOn
8 Khademi, B., Bahranifard, H., Azarpira, N. and Behboodi, E. (2013) Clinical application of amniotic membrane as a biologic dressing in oral cavity and pharyngeal defects after tumor resection. Arch. Iran. Med. 16, 503-506.
9 Ariga, H., Takahashi-Niki, K., Kato, I., Maita, H., Niki, T. and Iguchi-Ariga, S. M. (2013) Neuroprotective function of DJ-1 in Parkinson's disease. Oxid. Med. Cell Longev. 2013, 683920.
10 Tseng, S. C., Di Pascuale, M. A., Liu, D. T., Gao, Y. Y. and Baradaran-Rafii, A. (2005) Intraoperative mitomycin C and amniotic membrane transplantation for fornix reconstruction in severe cicatricial ocular surface diseases. Ophthalmology 112, 896-903.   DOI   ScienceOn
11 Mohammadi, A. A., Johari, H. G. and Eskandari, S. (2013) Effect of amniotic membrane on graft take in extremity burns. Burns 39, 1137-1141.   DOI   ScienceOn
12 Samandari, M. H., Yaghmaei, M., Ejlali, M., Moshref, M. and Saffar, A. S. (2004) Use of amnion as a graft material in vestibuloplasty: a preliminary report. Oral. Surg. Oral. Med. Oral. Pathol. Oral Radiol. Endod. 97, 574-578.   DOI   ScienceOn
13 Gharib, M., Ure, B. M. and Klose, M. (1996) Use of amniotic grafts in the repair of gastroschisis. Pediatr. Surg. Int. 11, 96-99.   DOI   ScienceOn
14 Liu, Y., Cao, D. L., Guo, L. B., Guo, S. N., Xu, J. K. and Zhuang, H. F. (2013) Amniotic stem cell transplantation therapy for type 1 diabetes: a case report. J. Int. Med. Res. 41, 1370-1377.   DOI   ScienceOn
15 Wu, Z. Y., Hui, G. Z., Lu,Y., Wu, X. and Guo, L. H. (2006) Transplantation of human amniotic epithelial cells improves hindlimb function in rats with spinal cord injury. Chin. Med. J. (Engl). 119, 2101-2107.
16 Xue, H., Zhang, X. Y., Liu, J. M., Song, Y., Li, Y. F. and Chen, D. (2013) Development of a chemically extracted acellular muscle scaffold seeded with amniotic epithelial cells to promote spinal cord repair. J. Biomed. Mater. Res. A. 101, 145-156.
17 Doret, M., Cartier, R., Miribel, J., Massardier, J., Massoud, M., Bordes, A., Moret, S. and Gaucherand, P. (2013) Premature preterm rupture of the membrane diagnosis in early pregnancy: PAMG-1 and IGFBP-1 detection in amniotic fluid with biochemical tests. Clin. Biochem. 46, 1816-1819.   DOI   ScienceOn
18 de Weerd, L., Weum, S., Sjavik, K., Acharya, G. and Hennig, R. O. (2013) A new approach in the repair of a myelomeningocele using amnion and a sensate perforator flap. J. Plast. Reconstr. Aesthet. Surg. 66, 860-863.   DOI   ScienceOn
19 McCarthy, S., Sarwar, M., Virapongse, C. and Ehrenkranz, R. (1984) Craniofacial anomalies in the amniotic band disruption complex. Pediatr. Radiol. 14, 44-46.   DOI
20 Villani, V., Milanesi, A., Sedrakyan, S., Da Sacco, S., Angelow, S., Conconi, M. T., Di Liddo, R., De Filippo, R. and Perin, L. (2014) Amniotic fluid stem cells prevent beta-cell injury. Cytotherapy 16, 41-55.   DOI   ScienceOn
21 Skardal, A., Mack, D., Kapetanovic, E., Atala, A., Jackson, J. D., Yoo, J. and Soker, S. (2012) Bioprinted amniotic fluid-derived stem cells accelerate healing of large skin wounds. Stem Cells Transl. Med. 1, 792-802.   DOI   ScienceOn
22 Weber, B., Emmert, M. Y., Behr, L., Schoenauer, R., Brokopp, C., Drogemuller, C., Modregger, P., Stampanoni, M., Vats, D., Rudin, M., Burzle, W., Farine, M., Mazza, E., Frauenfelder, T., Zannettino, A. C., Zund, G., Kretschmar, O., Falk, V. and Hoerstrup, S. P. (2012) Prenatally engineered autologous amniotic fluid stem cell-based heart valves in the fetal circulation. Biomaterials 33, 4031-4043.   DOI   ScienceOn
23 Liu, Y. W., Roan, J. N., Wang, S. P., Hwang, S. M., Tsai, M. S., Chen, J. H. and Hsieh, P. C. (2013) Xenografted human amniotic fluid-derived stem cell as a cell source in therapeutic angiogenesis. Int. J. Cardiol. 168, 66-75.   DOI   ScienceOn
24 Xue, S., Chen, C., Dong, W., Hui, G., Liu, T. and Guo, L. (2012) Therapeutic effects of human amniotic epithelial cell transplantation on double-transgenic mice co-expressing APPswe and PS1DeltaE9-deleted genes. Sci. China Life Sci. 55, 132-140.   DOI   ScienceOn
25 Werber, B. and Martin, E. (2013) A prospective study of 20 foot and ankle wounds treated with cryopreserved amniotic membrane and fluid allograft. J. Foot Ankle Surg. 52, 615-621.   DOI   ScienceOn
26 Tsai, M. S., Hwang, S. M., Tsai, Y. L., Cheng, F. C., Lee, J. L. and Chang, Y. J. (2006) Clonal amniotic fluid-derived stem cells express characteristics of both mesenchymal and neural stem cells. Biol. Reprod. 74, 545-551.   DOI   ScienceOn
27 McLaughlin, D., Tsirimonaki, E., Vallianatos, G., Sakellaridis, N., Chatzistamatiou, T., Stavropoulos-Gioka, C., Tsezou, A., Messinis, I. and Mangoura, D. (2006) Stable expression of a neuronal dopaminergic progenitor phenotype in cell lines derived from human amniotic fluid cells. J. Neurosci. Res. 83, 1190-1200.   DOI   ScienceOn
28 Pan, H. C., Chin, C. S., Yang, D. Y., Ho, S. P., Chen, C. J., Hwang, S. M., Chang, M. H. and Cheng, F. C. (2009) Human amniotic fluid mesenchymal stem cells in combination with hyperbaric oxygen augment peripheral nerve regeneration. Neurochem. Res. 34, 1304-1316.   DOI
29 Rehni, A. K., Singh, N., Jaggi, A. S. and Singh, M. (2007) Amniotic fluid derived stem cells ameliorate focal cerebral ischaemia-reperfusion injury induced behavioural deficits in mice. Behav. Brain Res. 183, 95-100.   DOI   ScienceOn
30 Cheng, F. C., Tai, M. H., Sheu, M. L., Chen, C. J., Yang, D. Y., Su, H. L., Ho, S. P., Lai, S. Z. and Pan, H. C. (2010) Enhancement of regeneration with glia cell line-derived neurotrophic factor-transduced human amniotic fluid mesenchymal stem cells after sciatic nerve crush injury. J. Neurosurg. 112, 868-879.   DOI   ScienceOn
31 Sankar, V. and Muthusamy, R. (2003) Role of human amniotic epithelial cell transplantation in spinal cord injury repair research. Neuroscience 118, 11-17.   DOI   ScienceOn
32 Kim, E. Y., Lee, K. B., Yu, J., Lee, J. H., Kim, K. J., Han, K. W., Park, K. S., Lee, D. S. and Kim, M. K. (2013) Neuronal cell differentiation of mesenchymal stem cells originating from canine amniotic fluid. Hum. Cell 2013 Oct 29. [Epub ahead of print]
33 Uchida, S., Inanaga, Y., Kobayashi, M., Hurukawa, S., Araie, M. and Sakuragawa, N. (2000) Neurotrophic function of conditioned medium from human amniotic epithelial cells. J. Neurosci. Res. 62, 585-590.   DOI
34 Tropel, P., Platet, N., Platel, J. C., Noel, D., Albrieux, M., Benabid, A. L. and Berger, F. (2006) Functional neuronal differentiation of bone marrow-derived mesenchymal stem cells. Stem Cells 24, 2868-2876.   DOI   ScienceOn
35 Tio, M., Tan, K. H., Lee, W., Wang, T. T. and Udolph, G. (2010) Roles of db-cAMP, IBMX and RA in aspects of neural differentiation of cord blood derived mesenchymal-like stem cells. PLoS One 5, e9398.   DOI   ScienceOn
36 Portmann-Lanz, C. B., Schoeberlein, A., Huber, A., Sager, R., Malek, A., Holzgreve, W. and Surbek, D. V. (2006) Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am. J. Obstet. Gynecol. 194, 664-673.   DOI   ScienceOn
37 Tremblay, R. G., Sikorska, M., Sandhu, J. K., Lanthier, P., Ribecco-Lutkiewicz, M. and Bani-Yaghoub, M. (2010) Differentiation of mouse Neuro 2A cells into dopamine neurons. J. Neurosci. Methods 186, 60-67.   DOI   ScienceOn
38 Pan, H. C., Yang, D. Y., Chiu, Y. T., Lai, S. Z., Wang, Y. C., Chang, M. H. and Cheng, F. C. (2006) Enhanced regeneration in injured sciatic nerve by human amniotic mesenchymal stem cell. J. Clin. Neurosci. 13, 570-575.   DOI   ScienceOn
39 Kakishita, K., Elwan, M. A., Nakao, N., Itakura, T. and Sakuragawa, N. (2000) Human amniotic epithelial cells produce dopamine and survive after implantation into the striatum of a rat model of Parkinson's disease: A potential source of donor for transplantation therapy. Experimental Neurology 165, 27-34.   DOI   ScienceOn
40 Okano, H., Ogawa, Y., Nakamura, M., Kaneko, S., Iwanami, A. and Toyama, Y. (2003) Transplantation of neural stem cells into the spinal cord after injury. Semin. Cell Dev. Biol. 14, 191-198.   DOI   ScienceOn
41 Abad, M., Mosteiro, L., Pantoja, C., Canamero, M., Rayon, T., Ors, I., Grana, O., Megias, D., Dominguez, O., Martinez, D., Manzanares, M., Ortega, S. and Serrano, M. (2013) Reprogramming in vivo produces teratomas and iPS cells with totipotency features. Nature 502, 340-345.   DOI   ScienceOn
42 Medvedev, S. P., Shevchenko, A. I. and Zakian, S. M. (2010) Induced Pluripotent Stem Cells: Problems and Advantages when Applying them in Regenerative Medicine. Acta. Naturae 2, 18-28.
43 Torricelli, F., Brizzi, L., Bernabei, P. A., Gheri, G., Di Lollo, S., Nutini, L., Lisi, E., Di Tommaso, M. and Cariati, E. (1993) Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital. J. Anat. Embryol. 98, 119-126.
44 Dua, H. S. and Azuara-Blanco, A. (1999) Amniotic membrane transplantation. Br. J. Ophthalmol. 83, 748-752.   DOI   ScienceOn
45 Tamagawa, T., Oi, S., Ishiwata, I., Ishikawa, H. and Nakamura, Y. (2007) Differentiation of mesenchymal cells derived from human amniotic membranes into hepatocyte-like cells in vitro. Hum. Cell 20, 77-84.   DOI   ScienceOn
46 Adinolfi, M., Akle, C. A., McColl, I., Fensom, A. H., Tansley, L., Connolly, P., Hsi, B. L., Faulk, W. P., Travers, P. and Bodmer, W. F. (1982) Expression of HLA antigens, beta 2-microglobulin and enzymes by human amniotic epithelial cells. Nature 295, 325-327.   DOI   ScienceOn
47 Miki, T., Lehmann, T., Cai, H., Stolz, D. B. and Strom, S. C. (2005) Stem cell characteristics of amniotic epithelial cells. Stem Cells 23, 1549-1559.   DOI   ScienceOn
48 Tseng, S. C., Li, D. Q. and Ma, X. (1999) Suppression of transforming growth factor-beta isoforms, TGF-beta receptor type II, and myofibroblast differentiation in cultured human corneal and limbal fibroblasts by amniotic membrane matrix. J. Cell Physiol. 179, 325-335.   DOI
49 Kim, J. S., Kim, J. C., Na, B. K., Jeong, J. M. and Song, C. Y. (2000) Amniotic membrane patching promotes healing and inhibits proteinase activity on wound healing following acute corneal alkali burn. Exp. Eye Res. 70, 329-337.   DOI   ScienceOn
50 Shay, J. W. and Wright, W. E. (2000) Hayflick, his limit, and cellular ageing. Nat. Rev. Mol. Cell Biol. 1, 72-76.   DOI   ScienceOn
51 Barzilay, R., Kan, I., Ben-Zur, T., Bulvik, S., Melamed, E. and Offen, D. (2008) Induction of human mesenchymal stem cells into dopamine-producing cells with different differentiation protocols. Stem Cells and Development 17, 547-554.   DOI   ScienceOn
52 Tsai, M. S., Lee, J. L., Chang, Y. J. and Hwang, S. M. (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum. Reprod. 19, 1450-1456.   DOI   ScienceOn
53 Payushina, O. V., Domaratskaya, E. L. and Starostin, V. I. (2006) Mesenchymal stem cells: Sources, phenotype, and differentiation potential. Biology Bulletin. 33, 2-18.   DOI
54 Choi, S. A., Choi, H. S., Kim, K. J., Lee, D. S., Lee, J. H., Park, J. Y., Kim, E. Y., Li, X., Oh, H. Y., Lee, D. S. and Kim, M. K. (2013) Isolation of canine mesenchymal stem cells from amniotic fluid and differentiation into hepatocyte-like cells. In. Vitro. Cell Dev. Biol. Anim. 49, 42-51.   DOI   ScienceOn
55 Moussavou, G., Kwak, D. H., Lim, M. U., Kim, J. S., Kim, S. U., Chang, K. T. and Choo, Y. K. (2013) Role of gangliosides in the differentiation of human mesenchymal-derived stem cells into osteoblasts and neuronal cells. BMB Rep. 46, 527-532.   DOI   ScienceOn
56 Carraro, G., Perin, L., Sedrakyan, S., Giuliani, S., Tiozzo, C., Lee, J., Turcatel, G., De Langhe, S. P., Driscoll, B., Bellusci, S., Minoo, P., Atala, A., De Filippo, R. E. and Warburton, D. (2008) Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem. Cells 26, 2902-2911.   DOI   ScienceOn
57 Connell, J. P., Camci-Unal, G., Khademhosseini, A. and Jacot, J. G. (2013) Amniotic Fluid-Derived Stem Cells for Cardiovascular Tissue Engineering Applications. Tissue Engineering Part B-Reviews. 19, 368-379.
58 in't Anker, P. S., Scherjon, S. A., Kleijburg-van der Keur, C., de Groot-Swings, G. M. J. S., Claas, F. H. J., Fibbe, W. E. and Kanhai, H. H. H. (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22, 1338-1345.   DOI   ScienceOn
59 Ryu, H. H, Lim, J. H., Byeon, Y. E., Park, J. R., Seo, M. S., Lee, Y. W., Kim, W. H., Kang, K. S. and Kweon, O. K. (2009) Functional recovery and neural differentiation after transplantation of allogenic adipose-derived stem cells in a canine model of acute spinal cord injury. J. Vet. Sci. 10, 273-284.   DOI   ScienceOn
60 Seminatore, C., Polentes, J., Ellman, D., Kozubenko, N., Itier, V., Tine, S., Tritschler, L., Brenot, M., Guidou, E., Blondeau, J., Lhuillier, M., Bugi, A., Aubry, L., Jendelova, P., Sykova, E., Perrier, A. L., Finsen, B. and Onteniente, B. (2010) The postischemic environment differentially impacts teratoma or tumor formation after transplantation of human embryonic stem cell-derived neural progenitors. Stroke 41, 153-159.   DOI   ScienceOn
61 Prusa, A. R. and Hengstschlager, M. (2002) Amniotic fluid cells and human stem cell research: a new connection. Med. Sci. Monit. 8, RA253-257.
62 Steigman, S. A., Ahmed, A., Shanti, R. M., Tuan, R. S., Valim, C. and Fauza, D. O. (2009) Sternal repair with bone grafts engineered from amniotic mesenchymal stem cells. J. Pediatr. Surg. 44, 1120-1126.   DOI   ScienceOn
63 Chang, Y. J., Ho, T. Y., Wu, M. L., Hwang, S. M., Chiou, T. W. and Tsai, M. S. (2013) Amniotic fluid stem cells with low gamma-interferon response showed behavioral improvement in parkinsonism rat model. PLoS One 8, e76118.   DOI
64 Tajiri, N., Acosta, S., Glover, L. E., Bickford, P. C., Jacotte Simancas, A., Yasuhara, T., Date, I., Solomita, M. A., Antonucci, I., Stuppia, L., Kaneko, Y. and Borlongan, C. V. (2012) Intravenous grafts of amniotic fluid-derived stem cells induce endogenous cell proliferation and attenuate behavioral deficits in ischemic stroke rats. PLoS One 7, e43779.   DOI