• 제목/요약/키워드: mesenchymal

검색결과 1,127건 처리시간 0.03초

연골세포 분화에 미치는 X-선의 영향 (The Effects of X-Irradiation on the chondrogensis of mesenchymal cells)

  • 하종렬
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제25권2호
    • /
    • pp.77-82
    • /
    • 2002
  • 이미 분화된 연골세포의 성숙과정에 미치는 X-선의 작용에 대해서는 잘 알려져 있다. 그러나 연골세포나 섬유아세포, 근육세포로 분화될 수 있는 미분화 간충직 세포의 분화과정에 미치는 X-선의 영향에 대해서는 잘 알려져 있지 않아, 본 연구에서는 초기 분화연구에 좋은 대상이 되는 계배 미분화 간충직세포를 이용하여 선량(1-10Gy)에 따라 연골세포 분화 과정에 X-선이 어떤 영향을 미치는가를 조사하였다. 연구결과 선량 의존적으로 연골세포분화가 억제됨을 alcian blue로 sulfated proteoglycan을 염색한 결과를 통해 알 수 있었다. 이는 X-선이 간충직세포와 같은 성숙 이전의 연골성 세포들에게는 모두 영향을 미침을 보여주는 것이다. 또한 이미 알려진 바와 같이 X-선은 분화된 연골세포의 성숙과정에 영향을 주기도 하지만 상기 연구를 통해서 간충직세포로부터 연골세포로 분화하는 과정을 억제시키기도 함을 보여줌으로써 간충직세포로부터 성숙된 연골세포로 되는 전과정에 X-선이 영향을 미친다는 사실과, 분화가 이루어지지 않은 세포일수록 X-선 조사의 영향을 크게 받음을 알 수 있다.

  • PDF

Prognostic Analysis of Primary Pulmonary Malignant Mesenchymal Tumors Treated Surgically

  • Sayan, Muhammet;Kankoc, Aykut;Ozkan, Dilvin;Celik, Ali;Kurul, Ismail Cuneyt;Tastepe, Abdullah Irfan
    • Journal of Chest Surgery
    • /
    • 제54권5호
    • /
    • pp.356-360
    • /
    • 2021
  • Background: Primary pulmonary malignant mesenchymal tumors are rare, constituting only 0.4% of all lung cancers. Since sarcomas are chemo/radio-resistant, surgical resection is the optimal treatment choice for patients with suitable medical conditions and tumor stage. In the present study, we analyzed the surgical outcomes and survival of primary pulmonary malignant mesenchymal tumors treated surgically. Methods: We retrospectively examined the records of patients with primary pulmonary malignant mesenchymal tumors who underwent surgical resection at our department between January 2010 and December 2020. Patient data were analyzed according to age, sex, tumor grade and stage, resection completeness, surgical type, and tumor histopathology. Results: Twenty patients were included in the study. There were 13 men (65%) and 7 women (35%). The median survival rate was 36 months (range, 19-53 months), and the 5-year overall survival rate was 37%. Unfavorable prognostic factors for overall survival included parietal pleural invasion (p=0.02), high tumor grade (p=0.02), advanced tumor stage (p=0.02), and extensive parenchymal resection (pneumonectomy and bilobectomy, p=0.01). The median length of disease-free survival was 31 months (interquartile range, 21-41 months), and the 5-year disease-free survival rate was 32%. The most unfavorable prognostic factors for recurrence were parietal pleural invasion (p=0.02), high tumor grade (p=0.01), and tumors requiring lung resection with chest wall resection (p=0.02). Conclusion: Primary malignant mesenchymal lung tumors are aggressive and have a high mortality rate. However, acceptable overall and disease-free survival rates can be obtained with surgical therapy.

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221

  • Chang, Woochul;Kim, Ran;Park, Sang In;Jung, Yu Jin;Ham, Onju;Lee, Jihyun;Kim, Ji Hyeong;Oh, Sekyung;Lee, Min Young;Kim, Jongmin;Park, Moon-Seo;Chung, Yong-An;Hwang, Ki-Chul;Maeng, Lee-So
    • Molecules and Cells
    • /
    • 제38권7호
    • /
    • pp.643-650
    • /
    • 2015
  • The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.

Egr-1-Snail 작용에 의한 epithelial-to-mesenchymal transition 유도 (Early Growth Response 1 Induces Epithelial-to-mesenchymal Transition via Snail)

  • 전현민;이수연;주민경;박혜경;강호성
    • 생명과학회지
    • /
    • 제23권8호
    • /
    • pp.970-977
    • /
    • 2013
  • Epithelial-to-mesenchymal transition (EMT)는 embryogenesis에서 중요한 역할을 하며 tumor metastasis, invasion에도 관여함으로써 tumor progression 및 aggressiveness에 기여한다. EMT는 EMT hallmark인 epithelial E-cadherin의 발현 감소와 mesenchymal-like cell morphology를 획득함으로써 epithelial cell polarity를 잃어버리는 특징을 가지고 있다. $O_2{^-}$, $H_2O_2$, $OH^-$와 같은 활성산소가 EMT를 유도하는 것으로 알려져 있다. Snail이 E-cadherin의 발현을 억제함으로써 ROS에 의한 EMT에 관여하는 것으로 알려져 있으나, 그 기작은 완전히 밝혀져 있지 않다. 본 연구에서는, noninvasive breast tumor cell line인 MCF-7 세포에 Egr-1을 과발현시킨 후 그 영향을 조사하였다. Egr-1이 과발현되면, MCF-7 세포는 epithelial cell polarity를 잃고 spindle-shaped로 변화되므로, Egr-1이 EMT를 유도할 가능성이 대두되었다. 또한 Snail이 Egr-1에 의한 EMT에 관여함을 확인하였다. 나아가, 본 연구진은 Egr-1-Snail axis가 ROS에 의해 활성화 되고, ROS에 의한 EMT에서 중요한 역할을 함을 발견하였다.

가토에서 자가유래 골아줄기세포를 이용한 상악동 골 이식술시 비계체로서 Bio-$Oss^{(R)}$의 효과에 관한 연구 (THE EFFECTS OF BIO-$OSS^{(R)}$ AS A SCAFFOLDS DURING SINUS BONE GRAFT USING MESENCHYMAL STEM CELLS IN RABBIT)

  • 이준;성대혁;최재영;최성림;차수련;장재덕;김은철
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제33권5호
    • /
    • pp.405-418
    • /
    • 2007
  • Mesenchymal stem cells(MSCs) have been though to be multipotent cells that can replicate that have the potential to differentiate into lineages of mesenchymal tissue including the bone, cartilage, fat, tendon, muscle, and marrow stroma. Especially, scaffolds to support cell-based tissue engineering are critical determinants of clinical efforts to regenerate and repair the body. Selection of a matrix carrier imvolves consideration of the matrix's role as a scaffold for physical support and host tissue integration as well as its ability to support of synergize the osteoinductive program of the implanted mesenchymal stem cell. The aim of this study is to evaluate the effect of autobone and Bio-$Oss^{(R)}$ to adherent mesenchymal stem cells as scaffolds on sinus augmentation with fibrin glue mixture in a rabbit model. 16 New Zealand White rabbits were divided randomly into 4 groups based on their time of sacrifice(1, 2, 4 and 8 weeks). First, mesenchymal stem cells were isolated from iliac crest marrow of rabbits and expanded in vitro. Cell culture was performed in accordance with the technique described by Tsutsumi et al. In the present study, the animals were sacrificed at 1, 2, 4 and 8 weeks after transplantation, and the bone formation ability of each sides was evaluated clinically, radiologically, histologically and histomorphologically. According to the histological observations, autobone scaffolds group showed integrated graft bone with host bone from sinus wall. At 2 and 4 weeks, it showed active newly formed bone and neovascularization. At 8 weeks, lamellae bone was observed in sinus graft material area. Radiologically, autobone with stem cell showed more radiopaque than Bio-$Oss^{(R)}$ scaffolds group. there were significant differences in bone volume between 4 and 8 weeks(p<0.05).

성견 치주인대세포의 줄기세포 특성 연구 (Stem cell properties of cells derived from canine periodontal ligament)

  • 김경화;김수환;설양조;이용무
    • Journal of Periodontal and Implant Science
    • /
    • 제37권3호
    • /
    • pp.479-488
    • /
    • 2007
  • In spite of the attention given to the study of mesenchymal stem cells derived periodontal ligament (PDL), there is a lack of information about canine PDL cells. In this study, we characterized canine PDL cells to clarify their stem cell properties, including self renewal, proliferate rate, stem cell markers and multipotency. PDL cells were obtained from extracted premolars of canines, following a colony forming assay and proliferation rate of sub-confluent cultures of cells for self-renewal, immunostaining for STRO-1 and CD146/MUC18 and a differentiation assay for multipotency. Canine PDL cells formed single-cells colonies and 25% of the PDL cells displayed positive staining for BrdU. The cells expressed the mesenchymal stem-cell markers, STRO-1 and CD146/MUC18. Under defined culture conditions, the cells differentiated into osteoblasts and adipocytes, but the cells didn't differentiated into chondrocytes. The findings of this study indicated that the canine PDL cells possess crucial stem cells properties, such as self-renewal and multipotency, and express the mesenchymal stem cell markers on their surface. The isolation and characterization of canine PDL cells makes it feasible to pursue preclinical models of periodontal regeneration in canine.

Usage of Human Mesenchymal Stem Cells in Cell-based Therapy: Advantages and Disadvantages

  • Kim, Hee Jung;Park, Jeong-Soo
    • 한국발생생물학회지:발생과생식
    • /
    • 제21권1호
    • /
    • pp.1-10
    • /
    • 2017
  • The use of human mesenchymal stem cells (hMSCs) in cell-based therapy has attracted extensive interest in the field of regenerative medicine, and it shows applications to numerous incurable diseases. hMSCs show several superior properties for therapeutic use compared to other types of stem cells. Different cell types are discussed in terms of their advantages and disadvantages, with focus on the characteristics of hMSCs. hMSCs can proliferate readily and produce differentiated cells that can substitute for the targeted affected tissue. To maximize the therapeutic effects of hMSCs, a substantial number of these cells are essential, requiring extensive ex vivo cell expansion. However, hMSCs have a limited lifespan in an in vitro culture condition. The senescence of hMSCs is a double-edged sword from the viewpoint of clinical applications. Although their limited cell proliferation potency protects them from malignant transformation after transplantation, senescence can alter various cell functions including proliferation, differentiation, and migration, that are essential for their therapeutic efficacy. Numerous trials to overcome the limited lifespan of mesenchymal stem cells are discussed.

Exploring upregulated genes during osteogenic differentiation of hMSCs

  • Ahn, Se-Kyung;Rim, Jae-Suk;Kwon, Jong-Jin;Lee, Eui-Seok;Jang, Hyon-Seok
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제34권1호
    • /
    • pp.11-18
    • /
    • 2008
  • Human bone marrow mesenchymal stem cells are thought to be multipotent cells, which are present in adult marrow, that can replicate as undifferentiated cells and that have the potential to differentiate to lineages of mesenchymal tissues, including bone, cartilage, fat, tenden, muscle, and marrow stroma. Cells that have the characteristics of human mesenchymal stem cells could be isolated from marrow aspirates of human and animals. This study was designed to identify and characterize genes specifically expressed by osteogenic supplements -treated cells by suppression subtractive hybridization(SSH) method. The results were as follows: 1. 2 genes were upregulated genes in osteogenic diffeentiation of hMSCs, which is further proved by Northern blot analysis. 2. IGFBP-2 has been identified playing an important role in bone formation. 3. HF1 was also upregulated during osteogenic differentiation, but its role in bone formation is not clear yet.

Preparation and Characterization of Genetically Engineered Mesenchymal Stem Cell Aggregates for Regenerative Medicine

  • Kim, Sun-Hwa;Moon, Hyung-Ho;Chung, Bong-Genn;Choi, Dong-Hoon
    • Journal of Pharmaceutical Investigation
    • /
    • 제40권6호
    • /
    • pp.333-337
    • /
    • 2010
  • Combining cell- and gene-based therapy is a promising therapeutic strategy in regenerative medicine. The aim of this study was to develop genetically modified mesenchymal stem cell (MSC) aggregates using a poly(ethylene glycol) (PEG) hydrogel micro-well array technique. Stable PEG hydrogel micro-well arrays with diameters of 200 to $500\;{\mu}m$ were fabricated and used to generate genetically engineered MSC aggregates. Rat bone marrow-derived MSCs were transfected with a green fluorescent protein (GFP) plasmid as a reporter gene, and aggregated by culturing in the PEG hydrogel micro-well arrays. The resultant cell aggregates had a mean diameter of less than $200\;{\mu}m$, and maintained the mesenchymal phenotype even after genetic modification and cell aggregation. Transplantation of MSC aggregates that are genetically modified to express therapeutic or cell-survival genes may be a potential therapeutic approach for regenerative medicine.