Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0050

Enhanced Healing of Rat Calvarial Bone Defects with Hypoxic Conditioned Medium from Mesenchymal Stem Cells through Increased Endogenous Stem Cell Migration via Regulation of ICAM-1 Targeted-microRNA-221  

Chang, Woochul (Department of Biology Education, College of Education, Pusan National University)
Kim, Ran (Department of Biology Education, College of Education, Pusan National University)
Park, Sang In (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine)
Jung, Yu Jin (EIT/LOFUS Research Center, International St. Mary's Hospital, Catholic Kwandong University)
Ham, Onju (Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine)
Lee, Jihyun (Department of Biology Education, College of Education, Pusan National University)
Kim, Ji Hyeong (Department of Biology Education, College of Education, Pusan National University)
Oh, Sekyung (Department of Neurology and Neurological Sciences, Stanford University School of Medicine)
Lee, Min Young (Department of Molecular Physiology, College of Pharmacy, Kyungpook National University)
Kim, Jongmin (Department of Life Systems, Sookmyung Women's University)
Park, Moon-Seo (Department of Biology Education, College of Education, Pusan National University)
Chung, Yong-An (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine)
Hwang, Ki-Chul (Institute for Bio-Medical Convergence, College of Medicine, Catholic Kwandong University)
Maeng, Lee-So (Institute of Catholic Integrative Medicine, Incheon St. Mary's Hospital, The Catholic University of Korea, College of Medicine)
Abstract
The use of conditioned medium from mesenchymal stem cells may be a feasible approach for regeneration of bone defects through secretion of various components of mesenchymal stem cells such as cytokines, chemokines, and growth factors. Mesenchymal stem cells secrete and accumulate multiple factors in conditioned medium under specific physiological conditions. In this study, we investigated whether the conditioned medium collected under hypoxic condition could effectively influence bone regeneration through enhanced migration and adhesion of endogenous mesenchymal stem cells. Cell migration and adhesion abilities were increased through overexpression of intercellular adhesion molecule-1 in hypoxic conditioned medium treated group. Intercellular adhesion molecule-1 was upregulated by microRNA-221 in mesenchymal stem cells because microRNAs are key regulators of various biological functions via gene expression. To investigate the effects in vivo, evaluation of bone regeneration by computed tomography and histological assays revealed that osteogenesis was enhanced in the hypoxic conditioned medium group relative to the other groups. These results suggest that behavioral changes of endogenous mesenchymal stem cells through microRNA-221 targeted-intercellular adhesion molecule-1 expression under hypoxic conditions may be a potential treatment for patients with bone defects.
Keywords
bone regeneration; calvarial defect model; hypoxic conditioned medium; intercellular adhesion molecule-1; mesenchymal stem cells; microRNA-221;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Chen, L., Tredget, E.E., Wu, P.Y., and Wu, Y. (2008). Paracrine factors of mesenchymal stem cells recruit macrophages and endothelial lineage cells and enhance wound healing. PLoS One 3, e1886.   DOI   ScienceOn
2 Chen, L., Xu, Y., Zhao, J., Zhang, Z., Yang, R., Xie, J., Liu, X., and Qi, S. (2014a). Conditioned medium from hypoxic bone marrowderived mesenchymal stem cells enhances wound healing in mice. PLoS One 9, e96161.   DOI   ScienceOn
3 Chen, Y., Bai, B., Zhang, S., Ye, J., Zhai, H., Chen, Y., Zhang, L., and Zeng, Y. (2014b). Study of a novel three-dimensional scaffold to repair bone defect in rabbit. J. Biomed. Mater. Res. A. 102, 1294-1304.   DOI   ScienceOn
4 Chen, X., Ali Khajeh, J., Ju, J.H., Gupta, Y.K., Stanley, C.B., Do, C., Heller, W.T., Aggarwal, A.K., Callaway, D.J., and Bu, Z. (2015). Phosphatidylinositol 4,5-bisphosphate clusters the cell adhesion molecule CD44 and assembles a specific CD44-Ezrin hetero complex, as revealed by small angle neutron scattering. J. Biol. Chem. 290, 6639-6652.   DOI   ScienceOn
5 Dong, Z., Fu, S., Xu, X., Yang, Y., Du, L., Li, W., Kan, S., Li, Z., Zhang, X., Wang, L., et al. (2014). Leptin-mediated regulation of ICAM-1 is Rho/ROCK dependent and enhances gastric cancer cell migration. Br. J. Cancer 110, 1801-1810.   DOI   ScienceOn
6 Du, SJ., Frenkel, V., Kindschi, G., and Zohar, Y. (2001). Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev. Biol. 238, 239-246.   DOI   ScienceOn
7 Gong, A.Y., Hu, G., Zhou, R., Liu, J., Feng, Y., Soukup, G.A., and Chen, X.M. (2011). MicroRNA-221 controls expression of intercellular adhesion molecule-1 in epithelial cells in response to Cryptosporidium parvum infection. Int. J. Parasitol. 41, 397-403.   DOI   ScienceOn
8 Ham, O., Lee, C., Song, B.W., Lee, S.Y., Kim, R., Park, J.H., Lee, J., Seo, H., Lee, C.Y., Chung, Y.A., et al. (2014). Upregulation of miR-23b enhances the autologous therapeutic potential for degenerative arthritis by targeting PRKACB in synovial fluidderived mesenchymal stem cells from patients. Mol. Cells 37, 449-456.   DOI   ScienceOn
9 Hung, S.C., Pochampally, R.R., Chen, S.C., Hsu, S.C., and Prockop, D.J. (2007). Angiogenic effects of human multipotent stromal cell conditioned medium activate the PI3K-Akt pathway in hypoxic endothelial cells to inhibit apoptosis, increase survival, and stimulate angiogenesis. Stem Cells 25, 2363-2370.   DOI   ScienceOn
10 Huang, T.F., Yew, T.L., Chiang, E.R., Ma, H.L., Hsu, C.Y., Hsu, S.H., Hsu, Y.T., and Hung, S.C. (2013). Mesenchymal stem cells from a hypoxic culture improve and engraft Achilles tendon repair. Am. J. Sports Med. 41, 1117-1125.   DOI   ScienceOn
11 Hwang, H.J., Chang, W., Song, B.W., Song, H., Cha, M.J., Kim, I.K., Lim, S., Choi, E.J., Ham, O., Lee, S.Y., et al. (2012). Antiarrhythmic potential of mesenchymal stem cell is modulated by hypoxic environment. J. Am. Coll. Cardiol. 60, 1698-1706.   DOI   ScienceOn
12 Inukai, T., Katagiri, W., Yoshimi, R., Osugi, M., Kawai, T., Hibi, H., and Ueda, M. (2013). Novel application of stem cell-derived factors for periodontal regeneration. Biochem. Biophys. Res. Commun. 430, 763-768.   DOI   ScienceOn
13 Jin, H.L., Kim, J.S., Kim, Y.J., Kim, S.J., Broxmeyer, H.E., and Kim, K.S. (2012). Dynamic expression of specific miRNAs during erythroid differentiation of human embryonic stem cells. Mol. Cells 34, 177-183.   DOI
14 Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004). Local delivery of marrowderived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543-1549.   DOI   ScienceOn
15 Maurel, D.B., Benaitreau, D., Jaffre, C., Toumi, H., Portier, H., Uzbekov, R., Pichon, C., Benhamou, C.L., Lespessailles, E., and Pallu, S. (2014). Effect of the alcohol consumption on osteocyte cell processes: a molecular imaging study. J. Cell Mol. Med. 18, 1680-1693.   DOI   ScienceOn
16 Lieberman, J.R., Daluiski, A., and Einhorn, T.A. (2002). The role of growth factors in the repair of bone. Biology and clinical applications. J. Bone Joint Surg. Am. 84-A, 1032-1044.
17 Liu, T., Wu, G., Wismeijer, D., Gu, Z., and Liu, Y. (2013a). Deproteinized bovine bone functionalized with the slow delivery of BMP-2 for the repair of critical-sized bone defects in sheep. Bone 56, 110-118.   DOI   ScienceOn
18 Liu, X., Chen, Q., Yan, J., Wang, Y., Zhu, C., Chen, C., Zhao, X., Xu, M., Sun, Q., Deng, R., et al. (2013b). MiRNA-296-3p-ICAM-1 axis promotes metastasis of prostate cancer by possible enhancing survival of natural killer cell-resistant circulating tumour cells. Cell Death Dis. 4, e928.   DOI   ScienceOn
19 Miron, R.J., Wei, L., Bosshardt, D.D., Buser, D., Sculean, A., and Zhang, Y. (2014). Effects of enamel matrix proteins in combination with a bovine-derived natural bone mineral for the repair of bone defects. Clin. Oral Investig. 18, 471-478.   DOI   ScienceOn
20 Osugi, M., Katagiri, W., Yoshimi, R., Inukai, T., Hibi, H., and Ueda, M. (2012). Conditioned media from mesenchymal stem cells enhanced bone regeneration in rat calvarial bone defects. Tissue Eng. Part A 18, 1479-1489.   DOI
21 Park, Y.S., Hwang, S., Jin, Y.M., Yu, Y., Jung, S.A., Jung, S.C., Ryu, K.H., Kim, H.S., and Jo, I. (2015). CCN1 secreted by tonsilderived mesenchymal stem cells promotes endothelial cell angiogenesis via integrin ${\alpha}v$ ${\beta}3$ and AMPK. J. Cell Physiol. 230, 140-149.   DOI   ScienceOn
22 Smith, A.N., Willis, E., Chan, V.T., Muffley, L.A., Isik, F.F., Gibran, N.S., and Hocking, A.M. (2010). Mesenchymal stem cells induce dermal fibroblast responses to injury. Exp. Cell Res. 316, 48-54.   DOI   ScienceOn
23 Sackstein, R., Merzaban, J.S., Cain, D.W., Dagia, N.M., Spencer, J.A., Lin, C.P., and Wohlgemuth, R. (2008). Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone. Nat. Med. 14, 181-187.   DOI   ScienceOn
24 Sassoli, C., Frati, A., Tani, A., Anderloni, G., Pierucci, F., Matteini, F., Chellini, F., Zecchi Orlandini, S., Formigli, L., and Meacci, E. (2014). Mesenchymal stromal cell secreted sphingosine 1-phosphate (S1P) exerts a stimulatory effect on skeletal myoblast proliferation. PLoS One 9, e108662.   DOI
25 Smerling, C., Tang, K., Hofmann, W., and Danker, K. (2007). Role of the alpha(1) integrin cytoplasmic tail in the formation of focal complexes, actin organization, and in the control of cell migration. Exp. Cell Res. 313, 3153-3165.   DOI   ScienceOn
26 Song, B.W., Chang, W., Hong, B.K., Kim, I.K., Cha, M.J., Lim, S., Choi, E.J., Ham, O., Lee, S.Y., Lee, C.Y., et al. (2013). Protein kinase C activation stimulates mesenchymal stem cell adhesion through activation of focal adhesion kinase. Cell Transplant. 22, 797-809.   DOI   ScienceOn
27 Srouji, S., Blumenfeld, I., Rachmiel, A., and Livne, E. (2004). Bone defect repair in rat tibia by TGF-beta1 and IGF-1 released from hydrogel scaffold. Cell Tissue Bank 5, 223-230.   DOI
28 Sun, J., Zhou, H., Deng, Y., Zhang, Y., Gu, P., Ge, S., and Fan, X. (2012). Conditioned medium from bone marrow mesenchymal stem cells transiently retards osteoblast differentiation by downregulating runx2. Cells Tissues Organs 196, 510-522.   DOI   ScienceOn
29 Ueda, R., Kohanbash, G., Sasaki, K., Fujita, M., Zhu, X., Kastenhuber, E.R., McDonald, H.A., Potter, D.M., Hamilton, R.L., Lotze, M.T., et al. (2009). Dicer-regulated microRNAs 222 and 339 promote resistance of cancer cells to cytotoxic Tlymphocytes by down-regulation of ICAM-1. Proc. Natl. Acad. Sci. USA 106, 10746-10751.   DOI   ScienceOn
30 Tabet, F., Vickers, K.C., Cuesta Torres, L.F., Wiese, C.B., Shoucri, B.M., Lambert, G., Catherinet, C., Prado-Lourenco, L., Levin, M.G., Thacker, S., et al. (2014). HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells. Nat. Commun. 5, 3292.
31 Vertelov, G., Kharazi, L., Muralidhar, M.G., Sanati, G., Tankovich, T., and Kharazi, A. (2013). High targeted migration of human mesenchymal stem cells grown in hypoxia is associated with enhanced activation of RhoA. Stem Cell Res. Ther. 4, 5.   DOI   ScienceOn
32 Villar, C.C., and Cochran, D.L. (2010). Regeneration of periodontal tissues: guided tissue regeneration. Dent. Clin. North Am. 54, 73-92.   DOI   ScienceOn
33 Walsh, W.R., Langdown, A.J., Auld, J.W., Stephens, P., Yu, Y., Vizesi, F., Bruce, W.J., and Pounder, N. (2008). Effect of low intensity pulsed ultrasound on healing of an ulna defect filled with a bone graft substitute. J. Biomed. Mater Res. B Appl. Biomater. 86, 74-81.
34 Wang, C.Y., Yang, H.B., Hsu, H.S., Chen, L.L., Tsai, C.C., Tsai, K.S., Yew, T.L., Kao, Y.H., and Hung, S.C. (2012). Mesenchymal stem cell-conditioned medium facilitates angiogenesis and fracture healing in diabetic rats. J. Tissue Eng. Regen. Med. 6, 559-569.   DOI   ScienceOn
35 Zhou, H., Xiao, C., Wang, Y., Bi, X., Ge, S., and Fan X. (2011). In vivo efficacy of bone marrow stromal cells coated with betatricalcium phosphate for the reconstruction of orbital defects in canines. Invest. Ophthalmol. Vis. Sci. 52, 1735-1741.   DOI   ScienceOn
36 Bragger, U., Hammerle, C.H., Mombelli, A., Burgin, W., and Lang, N.P. (1992). Remodelling of periodontal tissues adjacent to sites treated according to the principles of guided tissue regeneration (GTR). J. Clin. Periodontol. 19, 615-624.   DOI   ScienceOn
37 Zuo, J., Xia, J., Ju, F., Yan, J., Zhu, A., Jin, S., Shan, T., and Zhou, H. (2013). MicroRNA-148a can regulate run-related transcription factor 3 gene expression via modulation of DNA methyltranferase 1 in gastric cancer. Mol. Cells 35, 313-319.   DOI
38 Ando, Y., Matsubara, K., Ishikawa, J., Fujio, M., Shohara, R., Hibi, H., Ueda, M., and Yamamoto, A. (2014). Stem cell-conditioned medium accelerates distraction osteogenesis through multiple regenerative mechanisms. Bone 61, 82-90.   DOI   ScienceOn
39 Becker, H.M., Rullo, J., Chen, M., Ghazarian, M., Bak, S., Xiao, H., Hay, J.B, and Cybulsky, M.I. (2013). ${\alpha}1{\beta}1$ integrin-mediated adhesion inhibits macrophage exit from a peripheral inflammatory lesion. J. Immunol. 190, 4305-4314.   DOI   ScienceOn
40 Bharadwaj, A.S., Schewitz-Bowers, L.P., Wei, L., Lee, R.W., and Smith, J.R. (2013). Intercellular adhesion molecule 1 mediates migration of Th1 and Th17 cells across human retinal vascular endothelium. Invest. Ophthalmol. Vis. Sci. 54, 6917-6925.   DOI
41 Chang, W., Song, B.W., Lim, S., Song, H., Shim, C.Y., Cha, M.J., Ahn, D.H., Jung, Y.G., Lee, D.H., Chung, J.H., et al. (2009). Mesenchymal stem cells pretreated with delivered Hph-1-Hsp70 protein are protected from hypoxia-mediated cell death and rescue heart functions from myocardial injury. Stem Cells 27, 2283-2292.   DOI   ScienceOn