Browse > Article
http://dx.doi.org/10.4062/biomolther.2017.071

Melatonin Rescues Mesenchymal Stem Cells from Senescence Induced by the Uremic Toxin p-Cresol via Inhibiting mTOR-Dependent Autophagy  

Yun, Seung Pil (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine)
Han, Yong-Seok (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Lee, Jun Hee (Department of Pharmacology and Toxicology, University of Alabama at Birmingham School of Medicine)
Kim, Sang Min (Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Department of Neurology, Johns Hopkins University School of Medicine)
Lee, Sang Hun (Medical Science Research Institute, Soonchunhyang University Seoul Hospital)
Publication Information
Biomolecules & Therapeutics / v.26, no.4, 2018 , pp. 389-398 More about this Journal
Abstract
p-Cresol, found at high concentrations in the serum of chronic kidney failure patients, is known to cause cell senescence and other complications in different parts of the body. p-Cresol is thought to mediate cytotoxic effects through the induction of autophagy response. However, toxic effects of p-cresol on mesenchymal stem cells have not been elucidated. Thus, we aimed to investigate whether p-cresol induces senescence of mesenchymal stem cells, and whether melatonin can ameliorate abnormal autophagy response caused by p-cresol. We found that p-cresol concentration-dependently reduced proliferation of mesenchymal stem cells. Pretreatment with melatonin prevented pro-senescence effects of p-cresol on mesenchymal stem cells. We found that by inducing phosphorylation of Akt and activating the Akt signaling pathway, melatonin enhanced catalase activity and thereby inhibited the accumulation of reactive oxygen species induced by p-cresol in mesenchymal stem cells, ultimately preventing abnormal activation of autophagy. Furthermore, preincubation with melatonin counteracted other pro-senescence changes caused by p-cresol, such as the increase in total 5'-AMP-activated protein kinase expression and decrease in the level of phosphorylated mechanistic target of rapamycin. Ultimately, we discovered that melatonin restored the expression of senescence marker protein 30, which is normally suppressed because of the induction of the autophagy pathway in chronic kidney failure patients by p-cresol. Our findings suggest that stem cell senescence in patients with chronic kidney failure could be potentially rescued by the administration of melatonin, which grants this hormone a novel therapeutic role.
Keywords
Chronic kidney disease; p-Cresol; Melatonin; Senescence; Autophagy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Faure, V., Dou, L., Sabatier, F., Cerini, C., Sampol, J., Berland, Y., Brunet, P. and Dignat-George, F. (2006) Elevation of circulating endothelial microparticles in patients with chronic renal failure. J. Thromb. Haemost. 4, 566-573.   DOI
2 Watanabe, H., Miyamoto, Y., Honda, D., Tanaka, H., Wu, Q., Endo, M., Noguchi, T., Kadowaki, D., Ishima, Y., Kotani, S., Nakajima, M., Kataoka, K., Kim-Mitsuyama, S., Tanaka, M., Fukagawa, M., Otagiri, M. and Maruyama, T. (2013) p-Cresyl sulfate causes renal tubular cell damage by inducing oxidative stress by activation of NADPH oxidase. Kidney Int. 83, 582-592.   DOI
3 Yang, Z. J., Chee, C. E., Huang, S. and Sinicrope, F. A. (2011) The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533-1541.   DOI
4 Yu, L., Gong, B., Duan, W., Fan, C., Zhang, J., Li, Z., Xue, X., Xu, Y., Meng, D., Li, B., Zhang, M., Bin, Z., Jin, Z., Yu, S., Yang, Y. and Wang, H. (2017) Melatonin ameliorates myocardial ischemia/reperfusion injury in type 1 diabetic rats by preserving mitochondrial function: role of AMPK-PGC-$1{\alpha}$-SIRT3 signaling. Sci. Rep. 7, 41337.   DOI
5 Yun, S. P., Lee, M. Y., Ryu, J. M., Song, C. H. and Han, H. J. (2009) Role of HIF-1alpha and VEGF in human mesenchymal stem cell proliferation by 17beta-estradiol: involvement of PKC, PI3K/Akt, and MAPKs. Am. J. Physiol. Cell Physiol. 296, C317-C326.   DOI
6 Zhang, L., Su, P., Xu, C., Chen, C., Liang, A., Du, K., Peng, Y. and Huang, D. (2010) Melatonin inhibits adipogenesis and enhances osteogenesis of human mesenchymal stem cells by suppressing $PPAR{\gamma}$ expression and enhancing Runx2 expression. J. Pineal Res. 49, 364-372.   DOI
7 Zhao, H., Kalivendi, S., Zhang, H., Joseph, J., Nithipatikom, K., Vasquez-Vivar, J. and Kalyanaraman, B. (2003) Superoxide reacts with hydroethidine but forms a fluorescent product that is distinctly different from ethidium: potential implications in intracellular fluorescence detection of superoxide. Free Radic. Biol. Med. 34, 1359-1368.   DOI
8 Krause, D. S., Theise, N. D., Collector, M. I., Henegariu, O., Hwang, S., Gardner, R., Neutzel, S. and Sharkis, S. J. (2001) Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell. Cell 105, 369-377.   DOI
9 Lee, S. J., Jung, Y. H., Oh, S. Y., Yun, S. P. and Han, H. J. (2014) Melatonin enhances the human mesenchymal stem cells motility via melatonin receptor 2 coupling with $G{\alpha}q$ in skin wound healing. J. Pineal Res. 57, 393-407.   DOI
10 Lesniewski, L. A., Seals, D. R., Walker, A. E., Henson, G. D., Blimline, M. W., Trott, D. W., Bosshardt, G. C., LaRocca, T. J., Lawson, B. R., Zigler, M. C. and Donato, A. J. (2017) Dietary rapamycin supplementation reverses age-related vascular dysfunction and oxidative stress, while modulating nutrient-sensing, cell cycle, and senescence pathways. Aging Cell 16, 17-26.   DOI
11 Li, W., Saud, S. M., Young, M. R., Chen, G. and Hua, B. (2015) Targeting AMPK for cancer prevention and treatment. Oncotarget 6, 7365-7378.
12 Martin, V., Sanchez-Sanchez, A. M., Puente-Moncada, N., Gomez-Lobo, M., Alvarez-Vega, M. A., Antolin, I. and Rodriguez, C. (2014) Involvement of autophagy in melatonin-induced cytotoxicity in glioma-initiating cells. J. Pineal Res. 57, 308-316.   DOI
13 Liang, Q., Luo, Z., Zeng, J., Chen, W., Foo, S. S., Lee, S. A., Ge, J., Wang, S., Goldman, S. A., Zlokovic, B. V., Zhao, Z. and Jung, J. U. (2016) Zika virus NS4A and NS4B proteins deregulate Akt-mTOR signaling in human fetal neural stem cells to inhibit neurogenesis and induce autophagy. Cell Stem Cell 19, 663-671.   DOI
14 Lin, H. H., Huang, C. C., Lin, T. Y. and Lin, C. Y. (2015) p-Cresol mediates autophagic cell death in renal proximal tubular cells. Toxicol. Lett. 234, 20-29.   DOI
15 Maiese, K. (2016) Targeting molecules to medicine with mTOR, autophagy and neurodegenerative disorders. Br. J. Clin. Pharmacol. 82, 1245-1266.   DOI
16 Altman, J. and Das, G. D. (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J. Comp. Neurol. 124, 319-335.   DOI
17 Zielonka, J., Srinivasan, S., Hardy, M., Ouari, O., Lopez, M., Vasquez-Vivar, J., Avadhani, N. G. and Kalyanaraman, B. (2008) Cytochrome c-mediated oxidation of hydroethidine and mito-hydroethidine in mitochondria: identification of homo- and heterodimers. Free Radic. Biol. Med. 44, 835-846.   DOI
18 Abbas, M., Jesel, L., Auger, C., Amoura, L., Messas, N., Manin, G., Rumig, C., Leon-Gonzalez, A. J., Ribeiro, T. P., Silva, G. C., Abou-Merhi, R., Hamade, E., Hecker, M., Georg, Y., Chakfe, N., Ohlmann, P., Schini-Kerth, V. B., Toti, F. and Morel, O. (2017) Endothelial microparticles from acute coronary syndrome patients induce premature coronary artery endothelial cell aging and thrombogenicity: role of the Ang II/AT1 receptor/NADPH oxidase-mediated activation of MAPKs and PI3-kinase pathways. Circulation 135, 280-296.   DOI
19 Acuna-Castroviejo, D., Escames, G., Venegas, C., Diaz-Casado, M. E., Lima-Cabello, E., Lopez, L. C., Rosales-Corral, S., Tan, D. X. and Reiter, R. J. (2014) Extrapineal melatonin: sources, regulation, and potential functions. Cell. Mol. Life Sci. 71, 2997-3025.   DOI
20 Adams, W. C., Chen, Y. H., Kratchmarov, R., Yen, B., Nish, S. A., Lin, W. W., Rothman, N. J., Luchsinger, L. L., Klein, U., Busslinger, M., Rathmell, J. C., Snoeck, H. W. and Reiner, S. L. (2016) Anabolism-associated mitochondrial stasis driving lymphocyte differentiation over self-renewal. Cell Rep. 17, 3142-3152.   DOI
21 Azevedo, M. L., Bonan, N. B., Dias, G., Brehm, F., Steiner, T. M., Souza, W. M., Stinghen, A. E., Barreto, F. C., Elifio-Esposito, S., Pecoits-Filho, R. and Moreno-Amaral, A. N. (2016) p-Cresyl sulfate affects the oxidative burst, phagocytosis process, and antigen presentation of monocyte-derived macrophages. Toxicol. Lett. 263, 1-5.   DOI
22 Brocca, A., Virzi, G. M., de Cal, M., Cantaluppi, V. and Ronco, C. (2013) Cytotoxic effects of p-cresol in renal epithelial tubular cells. Blood Purif. 36, 219-225.   DOI
23 Michalik, A. and Jarzyna, R. (2016) The key role of AMP-activated protein kinase (AMPK) in aging process. Postepy Biochem. 62, 459-471.
24 Maruyama, N., Ishigami, A. and Kondo, Y. (2010) Pathophysiological significance of senescence marker protein-30. Geriatr. Gerontol. Int. 10 Suppl 1, S88-S98.   DOI
25 Maung, S. C., El Sara, A., Chapman, C., Cohen, D. and Cukor, D. (2016) Sleep disorders and chronic kidney disease. World J. Nephrol. 5, 224-232.   DOI
26 Mehrzadi, S., Safa, M., Kamrava, S. K., Darabi, R., Hayat, P. and Motevalian, M. (2016) Protective mechanisms of melatonin against hydrogen peroxide induced toxicity in human bone-marrow derived mesenchymal stem cells. Can. J. Physiol. Pharmacol. [Epub ahead of print].
27 Meijers, B. K., Claes, K., Bammens, B., de Loor, H., Viaene, L., Verbeke, K., Kuypers, D., Vanrenterghem, Y. and Evenepoel, P. (2010) p-Cresol and cardiovascular risk in mild-to-moderate kidney disease. Clin. J. Am. Soc. Nephrol. 5, 1182-1189.   DOI
28 Menendez, J. A., Vellon, L., Oliveras-Ferraros, C., Cufi, S. and Vazquez-Martin, A. (2011) mTOR-regulated senescence and autophagy during reprogramming of somatic cells to pluripotency: a roadmap from energy metabolism to stem cell renewal and aging. Cell Cycle 10, 3658-3677.   DOI
29 Neirynck, N., Vanholder, R., Schepers, E., Eloot, S., Pletinck, A. and Glorieux, G. (2013) An update on uremic toxins. Int. Urol. Nephrol. 45, 139-150.   DOI
30 Noh, H., Yu, M. R., Kim, H. J., Jang, E. J., Hwang, E. S., Jeon, J. S., Kwon, S. H. and Han, D. C. (2014) Uremic toxin p-cresol induces Akt-pathway-selective insulin resistance in bone marrow-derived mesenchymal stem cells. Stem Cells 32, 2443-2453.   DOI
31 Dou, L., Cerini, C., Brunet, P., Guilianelli, C., Moal, V., Grau, G., De Smet, R., Vanholder, R., Sampol, J. and Berland, Y. (2002) P-cresol, a uremic toxin, decreases endothelial cell response to inflammatory cytokines. Kidney Int. 62, 1999-2009.   DOI
32 Cerini, C., Dou, L., Anfosso, F., Sabatier, F., Moal, V., Glorieux, G., De Smet, R., Vanholder, R., Dignat-George, F., Sampol, J., Berland, Y. and Brunet, P. (2004) P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro. Thromb. Haemost. 92, 140-150.
33 Chang, M. C., Chang, H. H., Chan, C. P., Yeung, S. Y., Hsien, H. C., Lin, B. R., Yeh, C. Y., Tseng, W. Y., Tseng, S. K. and Jeng, J. H. (2014) p-Cresol affects reactive oxygen species generation, cell cycle arrest, cytotoxicity and inflammation/atherosclerosis-related modulators production in endothelial cells and mononuclear cells. PLoS ONE 9, e114446.   DOI
34 Chua, S., Lee, F. Y., Chiang, H. J., Chen, K. H., Lu, H. I., Chen, Y. T., Yang, C. C., Lin, K. C., Chen, Y. L., Kao, G. S., Chen, C. H., Chang, H. W. and Yip, H. K. (2016) The cardioprotective effect of melatonin and exendin-4 treatment in a rat model of cardiorenal syndrome. J. Pineal Res. 61, 438-456.   DOI
35 D'Hooge, R., Van de Vijver, G., Van Bogaert, P. P., Marescau, B., Vanholder, R. and De Deyn, P. P. (2003) Involvement of voltage- and ligand-gated $Ca^{2+}$ channels in the neuroexcitatory and synergistic effects of putative uremic neurotoxins. Kidney Int. 63, 1764-1775.   DOI
36 Diehn, M., Cho, R. W., Lobo, N. A., Kalisky, T., Dorie, M. J., Kulp, A. N., Qian, D., Lam, J. S., Ailles, L. E., Wong, M., Joshua, B., Kaplan, M. J., Wapnir, I., Dirbas, F. M., Somlo, G., Garberoglio, C., Paz, B., Shen, J., Lau, S. K., Quake, S. R., Brown, J. M., Weissman, I. L. and Clarke, M. F. (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458, 780-783.   DOI
37 Qiao, C., Xu, W., Zhu, W., Hu, J., Qian, H., Yin, Q., Jiang, R., Yan, Y., Mao, F., Yang, H., Wang, X. and Chen, Y. (2008) Human mesenchymal stem cells isolated from the umbilical cord. Cell Biol. Int. 32, 8-15.   DOI
38 Park, J., Lee, H., Lee, H. J., Kim, G. C., Kim, D. Y., Han, S. and Song, K. (2016a) Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci. Rep. 6, 39298.   DOI
39 Park, J. H., Choi, S. H., Kim, H., Ji, S. T., Jang, W. B., Kim, J. H., Baek, S. H. and Kwon, S. M. (2016b) Doxorubicin regulates autophagy signals via accumulation of cytosolic $Ca^{2+}$ in human cardiac progenitor cells. Int. J. Mol. Sci. 17, E1680.   DOI
40 Phinney, D. G. and Prockop, D. J. (2007) Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair--current views. Stem Cells 25, 2896-2902.   DOI
41 Reiter, R. J. and Tan, D. X. (2003) What constitutes a physiological concentration of melatonin? J. Pineal Res. 34, 79-80.   DOI
42 Riva, B., De Dominici, M., Gnemmi, I., Mariani, S. A., Minassi, A., Minieri, V., Salomoni, P., Canonico, P. L., Genazzani, A. A., Calabretta, B. and Condorelli, F. (2016) Celecoxib inhibits proliferation and survival of chronic myelogeous leukemia (CML) cells via AMPK-dependent regulation of ${\beta}$-catenin and mTORC1/2. Oncotarget 7, 81555-81570.   DOI
43 Till, J. E. and Mc, C. E. (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat. Res. 14, 213-222.   DOI
44 Ganesan, R., Hos, N. J., Gutierrez, S., Fischer, J., Stepek, J. M., Daglidu, E., Kronke, M. and Robinson, N. (2017) Salmonella Typhimurium disrupts Sirt1/AMPK checkpoint control of mTOR to impair autophagy. PLoS Pathog. 13, e1006227.   DOI
45 Fernandez, A., Ordonez, R., Reiter, R. J., Gonzalez-Gallego, J. and Mauriz, J. L. (2015) Melatonin and endoplasmic reticulum stress: relation to autophagy and apoptosis. J. Pineal Res. 59, 292-307.   DOI
46 Fu, J., Zhao, S. D., Liu, H. J., Yuan, Q. H., Liu, S. M., Zhang, Y. M., Ling, E. A. and Hao, A. J. (2011) Melatonin promotes proliferation and differentiation of neural stem cells subjected to hypoxia in vitro. J. Pineal Res. 51, 104-112.   DOI
47 Gabriele, S., Sacco, R., Altieri, L., Neri, C., Urbani, A., Bravaccio, C., Riccio, M. P., Iovene, M. R., Bombace, F., De Magistris, L. and Persico, A. M. (2016) Slow intestinal transit contributes to elevate urinary p-cresol level in Italian autistic children. Autism Res. 9, 752-759.   DOI
48 Hardeland, R., Pandi-Perumal, S. R. and Cardinali, D. P. (2006) Melatonin. Int. J. Biochem. Cell Biol. 38, 313-316.   DOI
49 Kang, J. W., Cho, H. I. and Lee, S. M. (2014) Melatonin inhibits mTOR-dependent autophagy during liver ischemia/reperfusion. Cell. Physiol. Biochem. 33, 23-36.   DOI
50 Kim, C. H., Kim, K. H. and Yoo, Y. M. (2011) Melatonin protects against apoptotic and autophagic cell death in C2C12 murine myoblast cells. J. Pineal Res. 50, 241-249.   DOI
51 Kim, C. H., Kim, K. H. and Yoo, Y. M. (2012) Melatonin-induced autophagy is associated with degradation of MyoD protein in C2C12 myoblast cells. J. Pineal Res. 53, 289-297.   DOI