Browse > Article
http://dx.doi.org/10.5352/JLS.2013.23.8.970

Early Growth Response 1 Induces Epithelial-to-mesenchymal Transition via Snail  

Jeon, Hyun Min (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Lee, Su Yeon (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Ju, Min Kyung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Park, Hye Gyeong (Nanobiotechnology Center, Pusan National University)
Kang, Ho Sung (Department of Molecular Biology, College of Natural Sciences, Pusan National University)
Publication Information
Journal of Life Science / v.23, no.8, 2013 , pp. 970-977 More about this Journal
Abstract
The epithelial-to-mesenchymal transition (EMT) plays an essential role in embryogenesis and is involved in tumor metastasis and invasion; it significantly contributes to tumor progression and aggressiveness. The EMT is characterized by a loss of epithelial cell polarity as a result of the reduced expression of epithelial E-cadherin, a hallmark of the EMT, and the acquisition of mesenchymal-like cell morphology. Reactive oxygen species (ROS) such as $O_2{^-}$, $H_2O_2$, and $OH^-$ have been demonstrated to induce the EMT; although Snail is involved in ROS-induced EMT by transcriptionally repressing E-cadherin, its mechanism is not fully understood. In this study, we examined the effects of early growth response 1 (Egr-1) overexpression in noninvasive breast tumor cell line MCF-7 cells. Upon Egr-1 overexpression, MCF-7 cells lost epithelial cell polarity and became more spindle-shaped, indicating that Egr-1 may induce EMT. We found that Snail is implicated in Egr-1 induced EMT. We further demonstrate that the Egr-1-Snail axis is activated by ROS and plays a critical role(s) in ROS-induced EMT.
Keywords
Egr-1; epithelial-to-mesenchymal transition (EMT); Snail; E-cadherin; reactive oxygen species (ROS);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adamson, E. D. and Mercola, D. 2002. Egr1 transcription factor: multiple roles in prostate tumor cell growth and survival. Tumour Biol 23, 93-102.   DOI   ScienceOn
2 Ahmed, M. M. 2004. Regulation of radiation-induced apoptosis by early growth response-1 gene in solid tumors. Curr Cancer Drug Targets 4, 43-52.   DOI   ScienceOn
3 Baron, V., Adamson, E. D., Calogero, A., Ragona, G. and Mercola, D. 2006. The transcription factor Egr1 is a direct regulator of multiple tumor suppressors including TGFbeta1, PTEN, p53, and fibronectin. Cancer Gene Ther 13, 115-124.   DOI   ScienceOn
4 Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J. and Garcia De Herreros, A. 2000. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2, 84-89.   DOI   ScienceOn
5 Blanco, M. J., Moreno-Bueno, G., Sarrio, D., Locascio, A., Cano, A., Palacios, J. and Nieto, M. A. 2002. Correlation of Snail expression with histological grade and lymph node status in breast carcinomas. Oncogene 21, 3241-3246.   DOI   ScienceOn
6 Cannito, S., Novo, E., di Bonzo, L. V., Busletta, C., Colombatto, S. and Parola, M. 2010. Epithelial-mesenchymal transition: from molecular mechanisms, redox regulation to implications in human health and disease. Antioxid Redox Signal 12, 1383-1430.   DOI   ScienceOn
7 Cat, B., Stuhlmann, D., Steinbrenner, H., Alili, L., Holtkotter, O., Sies, H. and Brenneisen, P. 2006. Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119, 2727-2738.   DOI   ScienceOn
8 Grotegut, S., von Schweinitz, D., Christofori, G. and Lehembre, F. 2006. Hepatocyte growth factor induces cell scattering through MAPK/Egr-1-mediated upregulation of Snail. EMBO J 25, 3534-3545.   DOI   ScienceOn
9 Hussain, S. P., Hofseth, L. J. and Harris, C. C. 2003. Radical causes of cancer. Nat Rev Cancer 3, 276-285.   DOI   ScienceOn
10 Jeon, H. M., Lee, S. Y., Ju, M. K., Kim, C. H., Park, H. G. and Kang, H. S. 2013. Early growth response 1 regulates glucose deprivation-induced necrosis. Oncol Rep 29, 669-675.
11 Lee, S. Y., Jeon, H. M., Ju, M. K., Kim, C. H., Yoon, G., Han, S. I., Park, H. G. and Kang, H. S. 2012. Wnt/Snail signaling regulates cytochrome c oxidase and glucose metabolism. Cancer Res 72, 3607-3617.   DOI   ScienceOn
12 Liu, Y. N., Lee, W. W., Wang, C. Y., Chao, T. H., Chen, Y. and Chen, J. H. 2005. Regulatory mechanisms controlling human E-cadherin gene expression. Oncogene 24, 8277-8290.   DOI   ScienceOn
13 Lee, S. Y., Jeon, H. M., Kim, C. H., Ju, M. K., Bae, H. S., Park, H. G., Lim, S. C., Han, S. I. and Kang, H. S. 2011. Homeobox gene Dlx-2 is implicated in metabolic stress-induced necrosis. Mol Cancer 10, 113.   DOI
14 Liao, H., Hyman, M. C., Lawrence, D. A. and Pinsky, D. J. 2007. Molecular regulation of the PAI-1 gene by hypoxia: contributions of Egr-1, HIF-1alpha, and C/EBPalpha. FASEB J 21, 935-949.   DOI   ScienceOn
15 Lim, S. O., Gu, J. M., Kim, M. S., Kim, H. S., Park, Y. N., Park, C. K., Cho, J. W., Park, Y. M. and Jung, G. 2008. Epigenetic changes induced by reactive oxygen species in hepatocellular carcinoma: methylation of the E-cadherin promoter. Gastroenterology 135, 2128-2140, e2121-2128.
16 Lucerna, M., Pomyje, J., Mechtcheriakova, D., Kadl, A., Gruber, F., Bilban, M., Sobanov, Y., Schabbauer, G., Breuss, J., Wagner, O., Bischoff, M., Clauss, M., Binder, B. R. and Hofer, E. 2006. Sustained expression of early growth response protein-1 blocks angiogenesis and tumor growth. Cancer Res 66, 6708-6713.   DOI   ScienceOn
17 Mahalingam, D., Natoni, A., Keane, M., Samali, A. and Szegezdi, E. 2010. Early growth response-1 is a regulator of DR5-induced apoptosis in colon cancer cells. Br J Cancer 102, 754-764.   DOI   ScienceOn
18 Moody, S. E., Perez, D., Pan, T. C., Sarkisian, C. J., Portocarrero, C. P., Sterner, C. J., Notorfrancesco, K. L., Cardiff, R. D. and Chodosh, L. A. 2005. The transcriptional repressor Snail promotes mammary tumor recurrence. Cancer Cell 8, 197-209.   DOI   ScienceOn
19 Mori, K., Shibanuma, M. and Nose, K. 2004. Invasive potential induced under long-term oxidative stress in mammary epithelial cells. Cancer Res 64, 7464-7472.   DOI   ScienceOn
20 Nieto, M. A. 2002. The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3, 155-166.   DOI   ScienceOn
21 Pani, G., Giannoni, E., Galeotti, T. and Chiarugi, P. 2009. Redox-based escape mechanism from death: the cancer lesson. Antioxid Redox Signal 11, 2791-2806.   DOI   ScienceOn
22 Nishi, H., Nishi, K. H. and Johnson, A. C. 2002. Early Growth Response-1 gene mediates up-regulation of epidermal growth factor receptor expression during hypoxia. Cancer Res 62, 827-834.
23 Olmeda, D., Jorda, M., Peinado, H., Fabra, A. and Cano, A. 2007. Snail silencing effectively suppresses tumour growth and invasiveness. Oncogene 26, 1862-1874.   DOI   ScienceOn
24 Pani, G., Galeotti, T. and Chiarugi, P. 2010. Metastasis: cancer cell's escape from oxidative stress. Cancer Metastasis Rev 29, 351-378.   DOI
25 Peinado, H., Olmeda, D. and Cano, A. 2007. Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415-428.   DOI   ScienceOn
26 Radisky, D. C., Levy, D. D., Littlepage, L. E., Liu, H., Nelson, C. M., Fata, J. E., Leake, D., Godden, E. L., Albertson, D. G., Nieto, M. A., Werb, Z. and Bissell, M. J. 2005. Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature 436, 123-127.   DOI   ScienceOn
27 Rong, Y., Hu, F., Huang, R., Mackman, N., Horowitz, J. M., Jensen, R. L., Durden, D. L., Van Meir, E. G. and Brat, D. J. 2006. Early growth response gene-1 regulates hypoxia-induced expression of tissue factor in glioblastoma multiforme through hypoxia-inducible factor-1-independent mechanisms. Cancer Res 66, 7067-7074.   DOI   ScienceOn
28 Shi, D. Y., Xie, F. Z., Zhai, C., Stern, J. S., Liu, Y. and Liu, S. L. 2009. The role of cellular oxidative stress in regulating glycolysis energy metabolism in hepatoma cells. Mol Cancer 8, 32.   DOI   ScienceOn
29 Sugimachi, K., Tanaka, S., Kameyama, T., Taguchi, K., Aishima, S., Shimada, M., Sugimachi, K. and Tsuneyoshi, M. 2003. Transcriptional repressor snail and progression of human hepatocellular carcinoma. Clin Cancer Res 9, 2657-2664.
30 Thiel, G. and Cibelli, G. 2002. Regulation of life and death by the zinc finger transcription factor Egr-1. J Cell Physiol 193, 287-292.   DOI   ScienceOn
31 Thiery, J. P. and Sleeman, J. P. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol 7, 131-142.   DOI   ScienceOn
32 Wagner, M., Schmelz, K., Dorken, B. and Tamm, I. 2008. Transcriptional regulation of human survivin by early growth response (Egr)-1 transcription factor. Int J Cancer 122, 1278-1287.
33 Xie, B., Wang, C., Zheng, Z., Song, B., Ma, C., Thiel, G. and Li, M. 2011. Egr-1 transactivates Bim gene expression to promote neuronal apoptosis. J Neurosci 31, 5032-5044.   DOI   ScienceOn
34 Yamaguchi, H., Chen, C. T., Chou, C. K., Pal, A., Bornmann, W., Hortobagyi, G. N. and Hung, M. C. 2010. Adenovirus 5 E1A enhances histone deacetylase inhibitors-induced apoptosis through Egr-1-mediated Bim upregulation. Oncogene 29, 5619-5629.   DOI   ScienceOn
35 Yook, J. I., Li, X. Y., Ota, I., Hu, C., Kim, H. S., Kim, N. H., Cha, S. Y., Ryu, J. K., Choi, Y. J., Kim, J., Fearon, E. R. and Weiss, S. J. 2006. A Wnt-Axin2-GSK3beta cascade regulates Snail1 activity in breast cancer cells. Nat Cell Biol 8, 1398-1406.   DOI   ScienceOn
36 Zagurovskaya, M., Shareef, M. M., Das, A., Reeves, A., Gupta, S., Sudol, M., Bedford, M. T., Prichard, J., Mohiuddin, M. and Ahmed, M. M. 2009. EGR-1 forms a complex with YAP-1 and upregulates Bax expression in irradiated prostate carcinoma cells. Oncogene 28, 1121-1131.   DOI   ScienceOn
37 Zavadil, J. and Bottinger, E. P. 2005. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 24, 5764-5774.   DOI   ScienceOn
38 Zhang, P., Tchou-Wong, K. M. and Costa, M. 2007. Egr-1 mediates hypoxia-inducible transcription of the NDRG1 gene through an overlapping Egr-1/Sp1 binding site in the promoter. Cancer Res 67, 9125-9133.   DOI   ScienceOn