• Title/Summary/Keyword: mercury compounds

Search Result 69, Processing Time 0.03 seconds

Human Exposure and Health Effects of Inorganic and Elemental Mercury

  • Park, Jung-Duck;Zheng, Wei
    • Journal of Preventive Medicine and Public Health
    • /
    • v.45 no.6
    • /
    • pp.344-352
    • /
    • 2012
  • Mercury is a toxic and non-essential metal in the human body. Mercury is ubiquitously distributed in the environment, present in natural products, and exists extensively in items encountered in daily life. There are three forms of mercury, i.e., elemental (or metallic) mercury, inorganic mercury compounds, and organic mercury compounds. This review examines the toxicity of elemental mercury and inorganic mercury compounds. Inorganic mercury compounds are water soluble with a bioavailability of 7% to 15% after ingestion; they are also irritants and cause gastrointestinal symptoms. Upon entering the body, inorganic mercury compounds are accumulated mainly in the kidneys and produce kidney damage. In contrast, human exposure to elemental mercury is mainly by inhalation, followed by rapid absorption and distribution in all major organs. Elemental mercury from ingestion is poorly absorbed with a bioavailability of less than 0.01%. The primary target organs of elemental mercury are the brain and kidney. Elemental mercury is lipid soluble and can cross the blood-brain barrier, while inorganic mercury compounds are not lipid soluble, rendering them unable to cross the blood-brain barrier. Elemental mercury may also enter the brain from the nasal cavity through the olfactory pathway. The blood mercury is a useful biomarker after short-term and high-level exposure, whereas the urine mercury is the ideal biomarker for long-term exposure to both elemental and inorganic mercury, and also as a good indicator of body burden. This review discusses the common sources of mercury exposure, skin lightening products containing mercury and mercury release from dental amalgam filling, two issues that happen in daily life, bear significant public health importance, and yet undergo extensive debate on their safety.

Performance of Removal Efficiency for Mercury Compounds using Hybrid Filter System in a Coal-fired Power Plant (석탄화력발전시설에서의 하이브리드 집진기 적용 시 수은화합물 제어성능 평가)

  • Sung, Jin-Ho;Jang, Ha-Na;Back, Seung-Ki;Jung, Bup-Muk;Seo, Yong-Chil;Kang, Yeon-Suk;Lee, Chul-Kyu
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.30 no.3
    • /
    • pp.261-269
    • /
    • 2014
  • This study focused on the performance of the newly developed hybrid filter system to capture fine particulate matter and mercury compounds in a coal-fired power plant. The hybrid filter system combining bag-filter and electrostatic precipitator had been developed to remove fine particulate matter. However, it would have a good performance to control mercury compounds as well. In Hybrid filter capture system, the total removal efficiency of total mercury compounds consisting of particulate mercury ($Hg_p$), oxidized mercury ($Hg^{2+}$), and elemental mercury ($Hg^0$) was 66.2%. The speciation of mercury compounds at inlet and outlet of Hybrid filter capture system were 1.3% and 0% of $Hg_p$, 85.2% and 68.1% of $Hg^0$, and 13.5% and 31.9% of $Hg^{2+}$, respectively. In hybrid filter capture system injected with 100% of flue-gas, the removal efficiency of total mercury was calculated to increase to 93.5%.

Localization of Methyl Mercuric Chloride in the Reproductive Tract of Male Mice

  • Choe, Eun-Sang;Kim, Kuk-Ryul;Yee, Sung-Tae;Kim, Myung-Hoon;Min, Byung-Woon;Cho, Hyun-Wook
    • Toxicological Research
    • /
    • v.19 no.2
    • /
    • pp.153-159
    • /
    • 2003
  • Localization of mercury compounds was investigated in selective regions of the male reproductive tract using autometallography. The results demonstrated that mercury was observed in Sertoli and Leydig cells in testis, but not in the epithelial cells of rete testis and germ cells. In the efferent ductule, mercury compounds were observed in the cytoplasmic compartments of epithelial cells in the proximal and common regions, while they were observed in the supranuclear cytoplasmic compartments in the conus region. In the epididymis, the compounds were observed in the cytoplasmic compariments of narrow and basal cells, but not in the principal cells of the initial segment. In contrast, the compounds were evenly detected in the cytoplasmic compartments of principal cells in the caput. In the corpus and caudal epididymis, the compounds were observed in the basal region of principal cells. The data shows that mercury is differentially accumulated in the male reproductive tract in a region-specific manner.

A Study on the Mercury Emission Characteristic and Comparison Tests for Applicability of Latest Mercury Measuring Methods - Focus on the Cement Kiln - (시멘트 소성시설에서의 수은 배출특성 및 최신 측정방법 적용성 평가 연구)

  • Kim, Hyung-Chun;Kim, Hee-Jin;Kim, Jong-Hyeon;Kang, Dea-Il;Park, Jung-Min;Kim, Jeong-Hun
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.3
    • /
    • pp.241-250
    • /
    • 2017
  • Recently, there has been growing interest in the emission characteristics and behavior of anthropogenic mercury compounds from emission sources. It is required to establish a standard for reliable mercury measurement method. Therefore, this study has evaluated the applicability of the new measurement method; Continuous Emission Monitoring (US EPA 30A, CEM). In addition, the reliability evaluation was conducted through Ontario Hydro Method (ASTM D6784, OHM) and Sorbent trap method (US EPA Method 30B). As a monitoring result for three months via CEM from cement kiln, the maximum mercury compounds concentration was about $600{\mu}g/Sm^3$. This is because of the various of raw materials and fuel, and the absence of mercury-control device. The mercury compounds concentrations of OHM, Sorbent trap and CEM were 13.64 $(3.33{\sim}32.41){\mu}g/Sm^3$, $13.94(5.97{\sim}23.44){\mu}g/Sm^3$ and $14.68(6.19{\sim}26.75){\mu}g/Sm^3$, respectively. The relative standard deviations (% RSD) of the three methods were 5.1~40.9%. The result of this study suggest that it is possible to apply the CEM in the cement kiln when, QA/QC such as calibration is verified.

Preconcentration and Speciation of Trace Mercury Compounds in Water Sample Using Dithizonates Extraction and Reverse Phase Liquid Chromatography (디티존 착물 추출과 역상 액체 크로마토그래피를 이용한 물시료 중의 미량 수은 화합물의 농축 및 화학종의 분리)

  • Suh, Jung-Ki;Cho, Kyung-Haeng;Lee, Sang-Haak
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.81-88
    • /
    • 2000
  • A rapid preconcentration method was developed for the speciation of the trace mercury compounds in water sample. The mercury compounds were extracted and preconcentrated simply as their dithizone complexes by passing through the dithizone impregnated ultra-high molecular weight polyethylene (UHMWPE) membrane solvent inlet filter following sanification in methanol solvent. The concentrated dithizonates were separated by liquid chromatography on a $C_{18}$ column. Complete resolution was obtained between methyl-, ethyl-, phenyl-, and inorganic mercury with a mobile phase of 0.05 M acetate buffer (pH=4)/THF/methanol(3:5:2). The separnted mercury chelates were detected by spectrophotometrically at 475 nm. The proposed method was successfully applied to the speciation of mercury compounds in waste water with detection limit at the subnanogram/mL level.

  • PDF

Health Effects of Mercury Exposure through Fish (어패류를 통한 수은 노출과 건강영향)

  • SaKong, Joon
    • Journal of Yeungnam Medical Science
    • /
    • v.28 no.2
    • /
    • pp.105-115
    • /
    • 2011
  • Mercury is a toxic, persistent pollutant that bioaccumulates and biomagnifies through food webs. People are exposed to methyhnercruy mainly through their diet, especially through the consumption of freshwater and marine fish and of other animals that consume fish (e.g., marine mammals). All humans are exposed to low levels of mercury. Dietary patterns can increase exposure to a fish-eating population where the fish and seafood are contaminated with mercury. The primary toxicity targets of mercury and mercury compounds are the nervous system, kidneys, and cardiovascular system. It is generally accepted that developing organ systems are most sensitive to the toxic effects of mercury. The fetal-brain mercury levels appear to be significantly higher than the maternal-blood mercury levels, and the developing central nervous system of the fetus is currently regarded as the main system of concern as it demonstrates the greatest sensitivity. The subpopulation that may be at greater risk for mercury toxicity are those exposed to higher levels of methylmercury due to carnivorous fish, including sharks.

  • PDF

Effect of Vitamin C and GSH on the Hg Induced ROS (비타민 C와 글루타치온이 수은유도 ROS 생성에 미치는 영향)

  • Kwon, Kyoung-Jin;Sheen, Yhun-Yhong
    • Environmental Analysis Health and Toxicology
    • /
    • v.23 no.1
    • /
    • pp.33-39
    • /
    • 2008
  • The genotoxicity of mercury compounds have been investigated with a variety of genetic endpoints in prokaryotic and eukaryotic cells. The mercury ions are positively charged and easily form complexes with DNA by binding with negatively charged centers to cause mutagenesis. Further, the mercury ions can react with sulfhydryl (-SH) groups of proteins associated with DNA replication and alter genetic information. Another mechanism by which mercury damages DNA molecule is via its probable involvement of reactive oxygen species (ROS) and induces DNA strand breaks. In order to investigate whether the ROS production was induced by mercury, we performed ROS assay. As the result, the ROS production was significantly increased when it grows dose-dependently and time-dependently. We compared mercury alone-treated group and mercury co-treated with Vitamin C or glutathione group. As the result, the ROS production induced by mercury was decreased by Vitamin C and glutathione. Co-treated with Vitamin C and glutathione group was the most effective to lowering ROS production induced by mercury.

A Selective Determination Method of Inorganic and Organic Mercury (무기수은과 유기수은의 선택정량)

  • Kim, Chon Han
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.8
    • /
    • pp.392-398
    • /
    • 1997
  • A method of selective determination of inorganic and organic mercury compounds has been described. The $CHCl_3$ solution of a high molecular quaternary alkylammonium salt, Aliquat 336 was used for the simultaneous preconcentration of both inorganic, $Hg^{2+}$ as its thiocyanate complex, and organic mercury compounds, $CH_3HgCl$ and $C_2H_3O_2$ $HgC_6H_5$ by extraction from their aqueous solution. Selective separation of the inorganic mercury from the extract was followed by stripping with 3 M $HClO_4 $ solution for the subsequent determination by CVAAS. Organic mercury was also determined by CVAAS after removal of $CHCl_3solvent$ from the extract and decomposition of the residue with 4% $KMnO_4 $-1 MH_2$S0_4$. The mixtures of inorganic and organic mercury compounds contained 1.0 $\mug$ as Hg in 50 mL of sample solution(0.02 ${\mu}gHg/mL$) were analysed within ${\pm}6%$ by absolute errors.

  • PDF

Environmental Mercury and Its Toxic Effects

  • Rice, Kevin M.;Walker, Ernest M. Jr.;Wu, Miaozong;Gillette, Chris;Blough, Eric R.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.47 no.2
    • /
    • pp.74-83
    • /
    • 2014
  • Mercury exists naturally and as a man-made contaminant. The release of processed mercury can lead to a progressive increase in the amount of atmospheric mercury, which enters the atmospheric-soil-water distribution cycles where it can remain in circulation for years. Mercury poisoning is the result of exposure to mercury or mercury compounds resulting in various toxic effects depend on its chemical form and route of exposure. The major route of human exposure to methylmercury (MeHg) is largely through eating contaminated fish, seafood, and wildlife which have been exposed to mercury through ingestion of contaminated lower organisms. MeHg toxicity is associated with nervous system damage in adults and impaired neurological development in infants and children. Ingested mercury may undergo bioaccumulation leading to progressive increases in body burdens. This review addresses the systemic pathophysiology of individual organ systems associated with mercury poisoning. Mercury has profound cellular, cardiovascular, hematological, pulmonary, renal, immunological, neurological, endocrine, reproductive, and embryonic toxicological effects.

The Role of Mercury in the Etiology of Sperm Dysfunction in Holstein Bulls

  • Arabi, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.3
    • /
    • pp.335-340
    • /
    • 2006
  • A large number of toxicological substances and pharmacological and physical agents can cause reproductive intervention at the cellular and molecular level. The present study was designed to assess the effect of mercury ($HgCl_2$) at 50 to $550{\mu}M$ concentration ranges, in vitro, on the sperm membrane and DNA integrity, viability, and acrosomal status of normal bull spermatozoa. The samples were processed for sperm analyses using semen-diluting fluid (PBS, pH 7.2). We recorded a sharp increase in the lipid peroxidation/LPO rate; the highest was at $550{\mu}M$ mercury concentration, indicating a deleterious effect of mercury on the sperm membrane intactness. There was also a strong negative correlation between LPO rate and % viable spermatozoa (R = 0.987, p<0.001). Data obtained from a comet assay technique revealed that mercury is capable of inducing DNA breaks in the sperm nuclei. Interestingly, 92% of DNA breaks were double-stranded. The correlation between LPO rate and % DNA breaks was 0.984. Performing the gelatin test indicates that mercury is able to alter the integrity of acrosomal membranes showing an abnormal acrosome reaction. In this regard, a strong link was found between LPO rate and % halos (R = 0.990, p<0.001). Collectively, mercury proved to be a potent oxidant in the category of environmental factors affecting bull spermatozoa. Hence, considering the wide spread use of mercury and its compounds, these metals should be regarded with more concern.