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Effect of Vitamin C and GSH on the Hg Induced ROS
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ABSTRACT

The genotoxicity of mercury compounds have been investigated with a variety of genetic endpoints in
prokaryotic and eukaryotic cells. The mercury ions are positively charged and easily form complexes with
DNA by binding with negatively charged centers to cause mutagenesis. Further, the mercury ions can react
with sulfhydryl (-SH) groups of proteins associated with DNA replication and alter genetic information.
Another mechanism by which mercury damages DNA molecule is via its probable involvement of reactive
oxygen species (ROS) and induces DNA strand breaks.

In order to investigate whether the ROS production was induced by mercury, we performed ROS assay. As
the result, the ROS production was significantly increased when it grows dose-dependently and time-depen-
dently. We compared mercury alone-treated group and mercury co-treated with Vitamin C or glutathione
group. As the result, the ROS production induced by mercury was decreased by Vitamin C and glutathione.
Co-treated with Vitamin C and glutathione group was the most effective to lowering ROS production induced
by mercury.
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Hel|2 H7)|= 3k} (Ozuah, 2000; Clarkson, 2002).
]2 F7] 420] g)dlo|r} blood-brain barrierS-
HE EI3}x] E3)lcigl e blood-brain barrier7} <+
As] sl X3k AlAele] Mol AT
% 8lt} (National Research Council, 2000). 7] 4=
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YARA A= %07]715 ‘&E}(KOJlma et al.,
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(Patrick, 2002). 4=~2-2- t}ok3l 714L Ax 324 o]
A6 M2 ) 2 A4 B, Az A
9 =}, gkl A W 3E) A1 A A TRA o)
Bledt §4 we B ASNE S4E
2~ 9} (Yee and Choi, 1996). =3}, te] 4228 pj
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3 $H54 0] ST FelA U (WHO, 1991),
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Mercuric chloride (HgCl»), dimethyl sulfoxide
(DMSO), disodium ethylenediamine-tetraacetic acid
(EDTA), sodium chloride (NaCl), sodium hydroxide
(NaOH), sodium bicarbonate (NaHCOs), 2,7-dichlo-
rodihydrofluorescein diacetate (DCF-DA), fluoresca-
mine, Vitamin C, glutathione (GSH), Gibco RPMI
medium 1640, penicillin, streptomycin, horse-serum
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Fig. 1. Cytotoxicity test of HgCl, in L5178Y cells for the
comet assay. L5178Y cells were plated in a 12-well
plate at 1 x 10° cells per well and were treated with
the indicated concentrations (1.75~ 14 UM) of HgCl;
for 2 hours. Relative survival was determined by Try-

pan blue exclusion assay and expressed as percent
compared to the control group.
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Fig. 2. The dose effect of HgCl> on ROS production in
L5178Y cells. L5178Y cells were treated with the
indicated concentrations (1.25~5 M) of HgCl, for
24 hours. DCF fluorescence was measured using a
fluorescence microplate reader with 485-nm excita-
tion and 530-nm emission. Upon the same cells,
protein concentration was determined. DCF fluores-
cence was normalized to protein content and expre-
ssed as percent of control. Data are expressed as
mean =+ S.D.
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Fig. 3. The time course effect of HgCl> on ROS production
in L5178Y cells. L5178Y cells were treated with 5
UM HgCl, and incubated for 2, 4, 8, 12, 24 hours.
DCF fluorescence was measured using a fluore-
scence microplate reader with 485-nm excitation
and 530-nm emission. Upon the same cells, protein
concentration was determined. DCF fluorescence
was normalized to protein content and expressed as
percent of control. Data are expressed as mean+

S.D.
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Fig. 4. The dose effect of Vitamin C on ROS production
induced by HgCl, in L5178Y cells. L5178Y cells
were treated with 5 UM HgCl; and the indicated
concentrations (1.25~5 UM) of Vitamin C and in-
cubated for 2 hours. DCF fluorescence was mea-
sured using a fluorescence microplate reader with
485-nm excitation and 530-nm emission. Upon the
same cells, protein concentration was determined.
DCF fluorescence was normalized to protein content
and expressed as percent of control. Data are expre-
ssed as mean £ S.D.
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Fig. 5. The time course effect of Vitamin C on ROS pro-
duction induced by HgCls in L5178Y cells. LS178Y
cells were treated with 5 UM HgCl; and 5 UM Vita-
min C and incubated for 0.5, 1, 2, 3, 4 hours. DCF
fluorescence was measured using a fluorescence
microplate reader with 485-nm excitation and 530-
nm emission. Upon the same cells, protein concen-
tration was determined. DCF fluorescence was no-
rmalized to protein content and expressed as per-
cent of control. Data are expressed as mean+S.D.
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Fig. 6. The dose effect of glutathione on ROS production
induced by HgCl, in L5178Y cells. L5178Y cells
were treated with 5 UM HgCl; and the indicated
concentrations (30, 300 uM) of glutathione and incu-
bated for 2 hours. DCF fluorescence was measured
using a fluorescence microplate reader with 485-nm
excitation and 530-nm emission. Upon the same
cells, protein concentration was determined. DCF
fluorescence was normalized to protein content and
expressed as percent of control. Data are expressed
as mean = S.D.
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Fig. 7. The time course effect of glutathione on ROS pro-
duction induced by HgCl, in L5178Y cells. L5178Y
cells were treated with 5 uM HgCl, and 300 uM glu-
tathione and incubated for 0.5, 1, 2, 3, 4 hours. DCF
fluorescence was measured using a fluorescence
microplate reader with 485-nm excitation and 530-
nm emission. Upon the same cells, protein concen-
tration was determined. DCF fluorescence was nor-
malized to protein content and expressed as percent
of control. Data are expressed as mean+S.D.
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Fig. 8. The effect of Vitamin C and glutathione on ROS
production induced by HgCl, in L5178Y cells.
L5178Y cells were treated with 5 uM HgCl, and
100 uM Vitamin C and 100 uM glutathione and in-
cubated for 24 hours. DCF fluorescence was mea-
sured using a fluorescence microplate reader with
485-nm excitation and 530-nm emission. Upon the
same cells, protein concentration was determined.
DCF fluorescence was normalized to protein content
and expressed as percent of control. Data are expre-
ssed as mean=+S.D.
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