• Title/Summary/Keyword: memory distortion

Search Result 94, Processing Time 0.022 seconds

Quantization of LPC Coefficients Using a Multi-frame AR-model (Multi-frame AR model을 이용한 LPC 계수 양자화)

  • Jung, Won-Jin;Kim, Moo-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.2
    • /
    • pp.93-99
    • /
    • 2012
  • For speech coding, a vocal tract is modeled using Linear Predictive Coding (LPC) coefficients. The LPC coefficients are typically transformed to Line Spectral Frequency (LSF) parameters which are advantageous for linear interpolation and quantization. If multidimensional LSF data are quantized directly using Vector-Quantization (VQ), high rate-distortion performance can be obtained by fully utilizing intra-frame correlation. In practice, since this direct VQ system cannot be used due to high computational complexity and memory requirement, Split VQ (SVQ) is used where a multidimensional vector is split into multilple sub-vectors for quantization. The LSF parameters also have high inter-frame correlation, and thus Predictive SVQ (PSVQ) is utilized. PSVQ provides better rate-distortion performance than SVQ. In this paper, to implement the optimal predictors in PSVQ for voice storage devices, we propose Multi-Frame AR-model based SVQ (MF-AR-SVQ) that considers the inter-frame correlations with multiple previous frames. Compared with conventional PSVQ, the proposed MF-AR-SVQ provides 1 bit gain in terms of spectral distortion without significant increase in complexity and memory requirement.

Thermal Memory Effect Modeling and Compensation in Doherty Amplifier (Doherty 증폭기의 열 메모리 효과 모델링과 보상)

  • Lee Suk-Hui;Lee Sang-Ho;Bang Sung-Il
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.9 s.339
    • /
    • pp.49-56
    • /
    • 2005
  • Memory effect, which influence the performance of Doherty amplifier, become more significant and critical in designing these circuits as the modulation signal bandwidth and operation power level increase. This paper reports on an attempt to investigate, model and quantity the contribution of the electrical nonlinearity effects and the thermal memory effects to a Doherty amplifier's distortion generation. Also this raper reports on the development of an accurate dynamic expression of the instantaneous junction temperature as a function of the instantaneous dissipated power. This expression has been used in the construction of an electrothermal model for the Doherty amplifier. Parameters for the nelv proposed behavior model were determined from the Doherty amplifier measurements obtained under different excitation conditions. This study led us to conclude that the effects of the transistor self-heating phenomenon are important for signals with wideband modulation bandwidth(ex. W-CDMA or UMTS signal). Doherty amplifier with electrothermal memory effect compensator enhanced ACLR performance about 20 dB than without electrothemal memory effect compensator. Experiment results were mesured by 60W LDMOS Doherty amplifier and electrothermal memory effect compensator was simulated by ADS.

A study on the estimate of the angular distortion for a fillet weldment (필릿 용접부의 각변형량 예측에 관한 연구)

  • ;;;Lee, S. H.;Cho, S. H.
    • Journal of Welding and Joining
    • /
    • v.15 no.4
    • /
    • pp.63-69
    • /
    • 1997
  • Welding distortion is more serious problem than any other problems caused by welding process, especially, in the heavy-industrial place. These welding distortions are caused by nonuniform heating and cooling of metal during and after welding operations. And these distortion quantities are must be known to worker in production line because distorions are important role in assembling part. Therefore an analytical model to explain and predict the welding distortion are needed. A numerical analysis of welding distortion which is inelastic behavior of weldment would require the three dimensional calculation. But computing time and memory would be very large, and the resulting cost might be unacceptable. Therefore we use a numerical technique for two dimensional analysis in the section normal to the weld direction of weldment under an assumption of quasi-stationary conditions. But the result of the calculation under two dimensional(plane strain) assumption was not satisfied as compared with experimental result. This paper proposed a technique for analysing the welding angular distortion by using a constraint boundary condition on the two dimensional finite element model. The simulation results revealed that the constraint boundary model could more reasonably describe the welding distortion than the plane strain model did.

  • PDF

Distortion of the Visual Working Memory Induced by Stroop Interference (스트룹 간섭에 의한 시각작업기억의 왜곡 현상)

  • Kim, Daegyu;Hyun, Joo-Seok
    • Korean Journal of Cognitive Science
    • /
    • v.26 no.1
    • /
    • pp.27-51
    • /
    • 2015
  • The present study tested the effect of a top-down influence on recalling the colors of Stroop words. Participants remembered the colors of 1, 2, 3 or 6 Stroop words. After 1 second of a memory delay, they were asked to recall the color of a cued Stroop word by selecting out its corresponding color on a color-wheel stimulus. The correct recall was defined when the participants chose a color that was within ${\pm}45^{\circ}$ from the exact location of Stroop word's color on the color-wheel. Otherwise, the recall was defined as incorrect. The analyses of the frequency distribution of the participants' responses in the error trials showed that the probability of choosing the color-name of the target Stroop word was higher than the probability of other five color-names on the color-wheel. Further analyses showed that increasing the number of Stroop words to manipulate memory load did not affect the probability of the Stroop interference. These results indicate that the top-down interference by Stroop manipulation may induce systematic distortion of the stored representation in visual working memory.

Flexible bistable chiral splay nematic display mode using reactive mesogens

  • Bae, Kwang-Soo;Lee, You-Jin;You, Chang-Jae;Kim, Jae-Hoon
    • Journal of Information Display
    • /
    • v.12 no.4
    • /
    • pp.195-198
    • /
    • 2011
  • Proposed herein is a flexible bistable chiral splay nematic display mode with an enhanced memory retention time under external distortion. By adopting the polymerized reactive-mesogen structure mixed in a liquid crystal layer, local anchoring energy is generated on the boundary between the polymer structures, and the relaxation from the ${\pi}$-twisted state to the initial splay state could be interrupted. As a result, the memory retention time becomes significantly longer, and the stability against the external distortion is enhanced.

The Compression of Normal Vectors to Prevent Visulal Distortion in Shading 3D Mesh Models (3D 메쉬 모델의 쉐이딩 시 시각적 왜곡을 방지하는 법선 벡터 압축에 관한 연구)

  • Mun, Hyun-Sik;Jeong, Chae-Bong;Kim, Jay-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • Data compression becomes increasingly an important issue for reducing data storage spaces as well as transmis-sion time in network environments. In 3D geometric models, the normal vectors of faces or meshes take a major portion of the data so that the compression of the vectors, which involves the trade off between the distortion of the images and compression ratios, plays a key role in reducing the size of the models. So, raising the compression ratio when the normal vector is compressed and minimizing the visual distortion of shape model's shading after compression are important. According to the recent papers, normal vector compression is useful to heighten com-pression ratio and to improve memory efficiency. But, the study about distortion of shading when the normal vector is compressed is rare relatively. In this paper, new normal vector compression method which is clustering normal vectors and assigning Representative Normal Vector (RNV) to each cluster and using the angular deviation from actual normal vector is proposed. And, using this new method, Visually Undistinguishable Lossy Compression (VULC) algorithm which distortion of shape model's shading by angular deviation of normal vector cannot be identified visually has been developed. And, being applied to the complicated shape models, this algorithm gave a good effectiveness.

Neural Network Modeling of Memory Effects in RF Power Amplifier Using Two-tone Input Signals (Two-Tone 입력을 이용한 RF 전력증폭기 메모리 특성의 신경망 모델링)

  • Hwangbo Hoon;Kim Won-Ho;Nah Wansoo;Kim Byung-Sung;Park Cheonsuk;Yang Youngoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.10 s.101
    • /
    • pp.1010-1019
    • /
    • 2005
  • In this paper, we used neural network technique to model memory effects of RF power amplifier which is fed by two-tone input signals. The memory effects in power amplifier were identified by observing the unsymmetrical distribution of IMD(Inter-Modulation Distortion) measurements with the change of tone spacings and power levels. Different asymmetries of IMD were also found at different center frequencies. We applied TDNN technique to model LDMOS power amplifier based on two tone IMD data, and the accuracy was very high compared to other modeling methods such as the(memoryless) adaptive modeling method.

Multidimensional uniform cubic lattice vector quantization for wavelet transform coding (웨이브렛변환 영상 부호화를 위한 다차원 큐빅 격자 구조 벡터 양자화)

  • 황재식;이용진;박현욱
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.7
    • /
    • pp.1515-1522
    • /
    • 1997
  • Several image coding algorithms have been developed for the telecommunication and multimedia systems with high image quality and high compression ratio. In order to achieve low entropy and distortion, the system should pay great cost of computation time and memory. In this paper, the uniform cubic lattice is chosen for Lattice Vector Quantization (LVQ) because of its generic simplicity. As a transform coding, the Discrete Wavelet Transform (DWT) is applied to the images because of its multiresolution property. The proposed algorithm is basically composed of the biorthogonal DWT and the uniform cubic LVQ. The multiresolution property of the DWT is actively used to optimize the entropy and the distortion on the basis of the distortion-rate function. The vector codebooks are also designed to be optimal at each subimage which is analyzed by the biorthogonal DWT. For compression efficiency, the vector codebook has different dimension depending on the variance of subimage. The simulation results show that the performance of the proposed coding mdthod is superior to the others in terms of the computation complexity and the PSNR in the range of entropy below 0.25 bpp.

  • PDF

270 MHz Full HD H.264/AVC High Profile Encoder with Shared Multibank Memory-Based Fast Motion Estimation

  • Lee, Suk-Ho;Park, Seong-Mo;Park, Jong-Won
    • ETRI Journal
    • /
    • v.31 no.6
    • /
    • pp.784-794
    • /
    • 2009
  • We present a full HD (1080p) H.264/AVC High Profile hardware encoder based on fast motion estimation (ME). Most processing cycles are occupied with ME and use external memory access to fetch samples, which degrades the performance of the encoder. A novel approach to fast ME which uses shared multibank memory can solve these problems. The proposed pixel subsampling ME algorithm is suitable for fast motion vector searches for high-quality resolution images. The proposed algorithm achieves an 87.5% reduction of computational complexity compared with the full search algorithm in the JM reference software, while sustaining the video quality without any conspicuous PSNR loss. The usage amount of shared multibank memory between the coarse ME and fine ME blocks is 93.6%, which saves external memory access cycles and speeds up ME. It is feasible to perform the algorithm at a 270 MHz clock speed for 30 frame/s real-time full HD encoding. Its total gate count is 872k, and internal SRAM size is 41.8 kB.

A Research on the Magnitude/Phase Asymmetry Measurement Technique of the RF Power Amplifier Based on the Predistortive Tone Cancellation Technique

  • Choi, Heung-Jae;Shim, Sung-Un;Kim, Young-Gyu;Jeong, Yong-Chae;Kim, Chul-Dong
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.2
    • /
    • pp.73-77
    • /
    • 2010
  • This paper proposes a novel memory effect measurement technique in RF power amplifiers(PAs) using a two-tone intermodulation distortion(IMD) signal with a very simple and intuitive algorithm. Based on the proposed predistortive tone cancellation technique, the proposed measurement method is capable of measuring the relative phase and magnitude of the third-order and fifth-order IMDs, as well as the fundamental signal. The measured relative phase between the higher and lower IMD signal for specific tone spacing can be interpreted as the group delay(GD) information of the IMD signal concerned. From the group delay analysis, we can conclude that an adaptive control of GD as well as the magnitude and phase is a key function in increasing the linearization bandwidth and the dynamic range in a predistortion(PD) technique.