• Title/Summary/Keyword: memory characteristics

Search Result 1,517, Processing Time 0.028 seconds

An Efficient Index Buffer Management Scheme for a B+ tree on Flash Memory (플래시 메모리상에 B+트리를 위한 효율적인 색인 버퍼 관리 정책)

  • Lee, Hyun-Seob;Joo, Young-Do;Lee, Dong-Ho
    • The KIPS Transactions:PartD
    • /
    • v.14D no.7
    • /
    • pp.719-726
    • /
    • 2007
  • Recently, NAND flash memory has been used for a storage device in various mobile computing devices such as MP3 players, mobile phones and laptops because of its shock-resistant, low-power consumption, and none-volatile properties. However, due to the very distinct characteristics of flash memory, disk based systems and applications may result in severe performance degradation when directly adopting them on flash memory storage systems. Especially, when a B-tree is constructed, intensive overwrite operations may be caused by record inserting, deleting, and its reorganizing, This could result in severe performance degradation on NAND flash memory. In this paper, we propose an efficient buffer management scheme, called IBSF, which eliminates redundant index units in the index buffer and then delays the time that the index buffer is filled up. Consequently, IBSF significantly reduces the number of write operations to a flash memory when constructing a B-tree. We also show that IBSF yields a better performance on a flash memory by comparing it to the related technique called BFTL through various experiments.

A Study on Perceptual Characteristics of Facade Design and Composition Elements of Cafe Space (카페공간의 구성요소와 파사드디자인의 지각특성에 관한 연구)

  • Choi, Gae-Young
    • Korean Institute of Interior Design Journal
    • /
    • v.22 no.4
    • /
    • pp.70-77
    • /
    • 2013
  • This study has analysed the composition elements in a cafe space where visual transfer-elements are filled and the perceptual characteristics of facade designs with the purpose of drawing any important elements to advertisement and their related items for uniqueness of designs. For the analysis of the perception process shown in the consecutive situations of observing and visiting cafes, the cafe facade was grouped and stereotyped for the analysis of perceptual characteristics and significant composition elements for better designing of cafes through survey with representative facades as subjects. The conclusions from this study are the followings. First, for the uniqueness specific to cafes to be integrated into facade, memory was chosen first as the most significant advertisement factor followed by interest as with male and attention as with female. The memory has much to do with furniture and finishing material of Clause (4), Chapter 4.1 and the types having effects on perception of Clause (1) and the atmosphere having effect on that of Clause (2) were found to be major factors to attention and interest. Second, it was found out that women preferred horizontally stable partition and men clearly divided facades. The factor of shape was observed first among the constituents of facade followed by color. There was no difference with 'shape' between men and women and color was found to be a space constituent having a lot of effects on women. Third, the memory of experience from visiting a cafe was very likely to offer the motivation of visiting it again, on which furniture had the most effect followed by finishing material and color. Such elevation elements as facade and logo were found not to have effect on the memory or the re-visit. Any intention of visiting again seemed to be influenced by such comprehensive images as atmosphere rather than by any concrete facade, furniture, or appliance. From the above viewpoint, facade design should have any uniqueness or impressive feature as well as the effect of making passers-by drop in and attracting them into the shop. The analysis of attributes of facade constituents revealed that the abstract images in addition to the configuration of facade had much to do with interest or behavior.

Current- voltage (I-V) Characteristics of the Molecular Electronic Devices using Various Organic Molecules

  • Koo, Ja-Ryong;Pyo, Sang-Woo;Kim, Jun-Ho;Kim, Jung-Soo;Gong, Doo-Won;Kim, Young-Kwan
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.4
    • /
    • pp.154-158
    • /
    • 2005
  • Organic molecules have many properties that make them attractive for electronic applications. We have been examining the progress of memory cell by using molecular-scale switch to give an example of the application using both nano scale components and Si-technology. In this study, molecular electronic devices were fabricated with amino style derivatives as redox-active component. This molecule is amphiphilic to allow monolayer formation by the Langmuir-Blodgett (LB) method and then this LB monolayer is inserted between two metal electrodes. According to the current-voltage (I-V) characteristics, it was found that the devices show remarkable hysteresis behavior and can be used as memory devices at ambient conditions, when aluminum oxide layer was existed on bottom electrode. The diode-like characteristics were measured only, when Pt layer was existed as bottom electrode. It was also found that this metal layer interacts with organic molecules and acts as a protecting layer, when thin Ti layer was inserted between the organic molecular layer and Al top electrode. These electrical properties of the devices may be applicable to active components for the memory and/or logic gates in the future.

Growth and Characteristics of SrBi2Nb2O9 Thin Films for Memory Devices (메모리 소자에의 응용을 위한 SrBi2Nb2O9 박막의 성장 및 전기적 특성)

  • Gang, Dong-Hun;Choe, Hun-Sang;Lee, Jong-Han;Im, Geun-Sik;Jang, Yu-Min;Choe, In-Hun
    • Korean Journal of Materials Research
    • /
    • v.12 no.6
    • /
    • pp.464-469
    • /
    • 2002
  • $SrBi_2Nb_2O_9(SBN)$ thin films were grown on Pt/Ti/Si and p-type Si(100) substrates by rf-magnetron co-sputtering method using two ceramic targets, $SrNb_2O_6\; and \;Bi_2O_3$. The structural and electrical characteristics have been investigated to confirm the possibility of the SBN thin films for the applications to destructive and nondestructive read out ferroelectric random access memory(FRAM). For the optimum growth condition X-ray diffraction patterns showed that SBN films had well crystallized Bi-layered perovskite structure after $700^{\circ}C$ heat-treatment in furnace. From this specimen we got remnant polarization $(2P_r)$ of about 6 uC/$\textrm{cm}^2$ and coercive voltage $(V_c)$ of about 1.5 V at an applied voltage of 5 V. The leakage current density was $7.6{\times}10^{-7}$/A/$\textrm{cm}^2$ at an applied voltage of 5V. And for the NDRO-FRAM application, properties of SBN films on Si substrate has been investigated. From transmission electron microscopy (TEM) analysis, we found the furnace treated sample had a native oxide about 2 times thicker than the RTA treated sample and this thick native oxide layer had a bad effect on C-V characteristics of SBN/Si thin film. After $650^{\circ}C$ RTA process, we got the improved memory window of 1.3 V at an applied voltage of 5 V.

Etch Characteristics of MgO Thin Films in Cl2/Ar, CH3OH/Ar, and CH4/Ar Plasmas

  • Lee, Il Hoon;Lee, Tea Young;Chung, Chee Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.387-387
    • /
    • 2013
  • Currently, the flash memory and the dynamic random access memory (DRAM) have been used in a variety of applications. However, the downsizing of devices and the increasing density of recording medias are now in progress. So there are many demands for development of new semiconductor memory for next generation. Magnetic random access memory (MRAM) is one of the prospective semiconductor memories with excellent features including non-volatility, fast access time, unlimited read/write endurance, low operating voltage, and high storage density. MRAM is composed of magnetic tunnel junction (MTJ) stack and complementary metal-oxide semiconductor (CMOS). The MTJ stack consists of various magnetic materials, metals, and a tunneling barrier layer. Recently, MgO thin films have attracted a great attention as the prominent candidates for a tunneling barrier layer in the MTJ stack instead of the conventional Al2O3 films, because it has low Gibbs energy, low dielectric constant and high tunneling magnetoresistance value. For the successful etching of high density MRAM, the etching characteristics of MgO thin films as a tunneling barrier layer should be developed. In this study, the etch characteristics of MgO thin films have been investigated in various gas mixes using an inductively coupled plasma reactive ion etching (ICPRIE). The Cl2/Ar, CH3OH/Ar, and CH4/Ar gas mix were employed to find an optimized etching gas for MgO thin film etching. TiN thin films were employed as a hard mask to increase the etch selectivity. The etch rates were obtained using surface profilometer and etch profiles were observed by using the field emission scanning electron microscopy (FESEM).

  • PDF

Basic characteristics of metal-ferroelectric-insulator-semiconductor structure using a high-k PrOx insulator layer

  • Noda, Minoru;Kodama, Kazushi;Kitai, Satoshi;Takahashi, Mitsue;Kanashima, Takeshi;Okuyama, Masanori
    • Electrical & Electronic Materials
    • /
    • v.16 no.9
    • /
    • pp.64.1-64
    • /
    • 2003
  • A metal-ferroelectric [SrBi$_2$Ta$_2$O$\_$9/ (SBT)-high-k-insulator(PrOx)-semiconductor(Si) structure has been fabricated and evaluated as a key part of metal-ferroelectric-insulator-semiconductor-field-effect-transistor MFIS-FET memory, aiming to improve the memory retention characteristics by increasing the dielectric constant in the insulator layer and suppressing the depolarization field in the SBT layer. A 20-nm PrOx film grown on Si(100) showed both a high of about 12 and a low leakage current density of less than 1${\times}$ 10e-8 A/$\textrm{cm}^2$ at 105 MV/cm. A 400-nm SBT film prepared on PrOx/Si shows a preferentially oriented (105) crystalline structure, grain size of about 130 nm and subface roughness of 3.2 nm. A capacitance-voltage hysteresis is confirmed on the Pt/SBT/PrOx/Si diode with a memory window of 0.3V at a sweep voltage width of 12 V. The memory retention time was about 1 104s, comparable to the conventional Pt/SBT/SiO$\_$x/N$\_$y/(SiO$\_$N/)/Si. The gradual change of the capacitance indicates that some memory degradation mechanism is different from that in the Pt/SBT/SiON/Si structure.

  • PDF

Inductively Coupled Plasma Reactive Ion Etching of MgO Thin Films Using a $CH_4$/Ar Plasma

  • Lee, Hwa-Won;Kim, Eun-Ho;Lee, Tae-Young;Chung, Chee-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.77-77
    • /
    • 2011
  • These days, a growing demand for memory device is filled up with the flash memory and the dynamic random access memory (DRAM). Although DRAM is a reasonable solution for current demand, the universal novel memory with high density, high speed and nonvolatility, needs to be developed. Among various new memories, the magnetic random access memory (MRAM) device is considered as one of good candidate memories because of excellent features including high density, high speed, low operating power and nonvolatility. The etching of MTJ stack which is composed of magnetic materials and insulator such as MgO is one of the vital process for MRAM. Recently, MgO has attracted great interest in the MTJ stack as tunneling barrier layer for its high tunneling magnetoresistance values. For the successful realization of high density MRAM, the etching process of MgO thin films should be investigated. Until now, there were some works devoted to the investigations on etch characteristics of MgO thin films. Initially, ion milling was applied to the etching of MgO thin films. However, ion milling has many disadvantages such as sidewall redeposition and etching damage. High density plasma etching containing the magnetically enhanced reactive ion etching and high density reactive ion etching have been employed for the improvement of etching process. In this work, inductively coupled plasma reactive ion etching (ICPRIE) system was adopted for the improvement of etching process using MgO thin films and etching gas mixes of $CH_4$/Ar and $CH_4$/$O_2$/Ar have been employed. The etch rates are measured by a surface profilometer and etch profiles are observed using field emission scanning emission microscopy (FESEM). The effects of gas concentration and etch parameters such as coil rf power, dc-bias voltage to substrate, and gas pressure on etch characteristics will be systematically explored.

  • PDF

Thermal Behavior and Crystallographic Characteristics of an Epitaxial C49-$TiSi_2$ Phase Formed in the Si (001) Substrate by $N_2$Treatment (Si (001) 기판에서 $N_2$처리에 의해 형성된 에피택셜 C49-$TiSi_2$상의 열적 거동과 결정학적 특성에 관한 연구)

  • Yang, Jun-Mo;Lee, Wan-Gyu;Park, Tae-Soo;Lee, Tae-Kwon;Kim, Joong-Jung;Kim, Weon;Kim, Ho-Joung;Park, Ju-Chul;Lee, Soun-Young
    • Korean Journal of Materials Research
    • /
    • v.11 no.2
    • /
    • pp.88-93
    • /
    • 2001
  • The thermal behavior and the crystallographic characteristics of an epitaxial $C49-TiSi_2$ island formed in a Si (001) substrate by $N_2$, treatment were investigated by X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM). It was found from the analyzed results that the epitaxial $C49-TiSi_2$ was thermally stable even at high temperature of $1000^{\circ}C$ therefore did not transform into the C54-stable phase and did not deform morphologically. HRTEM results clearly showed that the epitaxial $TiSi_2$ phase and Si have the orientation relationship of (060)[001]$TiSi_2$//(002)[110]Si, and the lattice strain energy at the interface was mostly relaxed by the formation of misfit dislocations. Furthermore, the mechanism on the formation of the epitaxial $_C49-TiSi2$ in Si and stacking faults lying on the (020) plane of the C49 Phase were discussed through the analysis of the HRTEM image and the atomic modeling.

  • PDF

Cell Signal Distribution Characteristics For High Density FeRAM

  • Kang, Hee-Bok;Park, Young-Jin;Lee, Jae-Jin;Ahn, Jin-Hong;Sung, Man-Young;Sung, Young-Kwon
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.3
    • /
    • pp.222-227
    • /
    • 2004
  • The sub-bitline (SBL) sensing voltage of a cell and total cell array can be measured by the method of SBL voltage evaluation method. The MOSAID tester can collect all SBL signals. The hierarchical bitline of unit cell array block is composed of the cell array of 2k rows and 128 columns, which is divided into 32 cell array sections. The unit cell array section is composed of the cell array of 64 rows and 128 columns. The average sensing voltage with 2Pr value of $5{\mu}C/cm^2$ and SBL capacitance of 40fF is about 700mV at 3.0V operation voltage. That is high compensation method for capacitor size degradation effect. Thus allowed minimum 2Pr value for high density Ferroelectric RAM (FeRAM) can move down to about less than $5{\mu}C/cm^2$.

The Architecture of the Flash Memory Storage System using Page Delete Information (페이지 삭제정보를 활용하는 플래시 저장장치의 구조)

  • Jung, Ho-Young;Park, Sung-Min;Kang, Soo-Yong;Cha, Jae-Hyuk
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.12
    • /
    • pp.958-962
    • /
    • 2009
  • Flash memory, which replaces hard disk recently, has different physical characteristics with hard disk. For the performance of flash memory based storage system, many researches over OS and file system layers has been doing. In this paper, we propose the architecture of flash memory based storage which uses information of page invalidation when file deletion occurs from upper layer. Also, we evaluate the performance of proposed system. Proposed system effectively increases IO performance by using page invalidation information to block merge and wear leveling algorithms.