• Title/Summary/Keyword: memory B cells

Search Result 70, Processing Time 0.036 seconds

Lactobacillus johnsonii CJLJ103 Attenuates Scopolamine-Induced Memory Impairment in Mice by Increasing BDNF Expression and Inhibiting NF-κB Activation

  • Lee, Hae-Ji;Lim, Su-Min;Kim, Dong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1443-1446
    • /
    • 2018
  • In the present study, we examined whether Lactobacillus johnsonii CJLJ103 (LJ) could alleviate cholinergic memory impairment in mice. Oral administration of LJ alleviated scopolamine-induced memory impairment in passive avoidance and Y-maze tasks. Furthermore, LJ treatment increased scopolamine-suppressed BDNF expression and CREB phosphorylation in the hippocampi of the brain, as well as suppressed $TNF-{\alpha}$ expression and $NF-{\kappa}B$ activation. LJ also increased BDNF expression in corticosterone-stimulated SH-SY5Y cells and inhibited $NF-{\kappa}B$ activation in LPS-stimulated microglial BV2 cells. However, LJ did not inhibit acetylcholinesterase activity. These findings suggest that LJ, a member of human gut microbiota, may mitigate cholinergic memory impairment by increasing BDNF expression and inhibiting $NF-{\kappa}B$ activation.

Effects of Treadmill Exercise on Memory, Hippocampal Cell Proliferation, BDNF, TrkB, and Forebrain Cholinergic Cells in Adolescent Rats (트레드밀 운동이 청소년기 흰쥐의 기억력과 해마 신경세포생성, BDNF, TrkB, 그리고 전뇌 콜린 세포에 미치는 영향)

  • Lee, Hee-Hyuk
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.403-410
    • /
    • 2009
  • This study investigated the effects of treadmill exercise on memory ability, cell proliferation, BDNF, and TrkB in the hippocampus and forebrain cholinergic cells in adolescent rats. Male Sprague-Dawley rats (4 weeks old) were randomly assigned to the following two groups: the sedentary group (n=10) and the exercise group (n=10). Rats in the exercise group were forced to run on a treadmill for 30 min, five times per week for 4 weeks. The latency of the step-through avoidance task was used in order to evaluate memory ability. Hippocampal brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) expression were assessed by Western blotting. Hippocampal cell proliferation and forebrain cholinergic cells were assessed by immunohistochemistry. The present study showed that treadmill running during the adolescent period significantly improved memory capability, increased hippocampal cell proliferation, up-regulated hippocampal BDNF and TrkB expression, and enhanced the number of forebrain cholinergic cells. These results suggest that regular exercise during the adolescent period may enhance memory function.

Stimulatory effects of Bordetella bronchiseptica antigen on bone marrow cells and immune memory responses (골수세포에 대한 Bordetella bronchiseptica 항원의 자극 효과 및 면역기억반응)

  • Yim, Seol-Hwa;Joo, Hong-Gu
    • Korean Journal of Veterinary Research
    • /
    • v.54 no.4
    • /
    • pp.203-208
    • /
    • 2014
  • Bone marrow is a hematological and immunological organ that provides multiple immune cells, including B lymphocytes, and thus plays a critical role in the efficacy of vaccine. We previously demonstrated that Bordetella (B.) bronchiseptica antigen has high immunogenicity in spleen cells, a peripheral immune organ. In this study, we investigated the immunogenicity of B. bronchiseptica antigen in bone marrow cells, a central immune organ. B. bronchiseptica antigen increased the cellular activity of bone marrow cells and significantly enhanced the production of nitric oxide, IL-6, and TNF-${\alpha}$. Bone marrow cells primed with B. bronchiseptica antigen in vivo were harvested and stimulated with the same antigen in vitro. The stimulation of B. bronchiseptica antigen significantly increased the cellular activity and proliferation rate of the primed cells. B. bronchiseptica antigen also greatly induced the production of antigen-specific antibody in the primed cells. Taken together, the present study demonstrated that B. bronchiseptica antigen can stimulate bone marrow cells, a central immune organ, and recall the immune response of the primed bone marrow cells.

A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells

  • Haerynn Chung;Eun-Ah Kim;Jun Chang
    • IMMUNE NETWORK
    • /
    • v.21 no.4
    • /
    • pp.28.1-28.14
    • /
    • 2021
  • Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.

Epigenetic memory in gene regulation and immune response

  • Kim, Min Young;Lee, Ji Eun;Kim, Lark Kyun;Kim, TaeSoo
    • BMB Reports
    • /
    • v.52 no.2
    • /
    • pp.127-132
    • /
    • 2019
  • Cells must fine-tune their gene expression programs for optimal cellular activities in their natural growth conditions. Transcriptional memory, a unique transcriptional response, plays a pivotal role in faster reactivation of genes upon environmental changes, and is facilitated if genes were previously in an active state. Hyper-activation of gene expression by transcriptional memory is critical for cellular differentiation, development, and adaptation. TREM (Transcriptional REpression Memory), a distinct type of transcriptional memory, promoting hyper-repression of unnecessary genes, upon environmental changes has been recently reported. These two transcriptional responses may optimize specific gene expression patterns, in rapidly changing environments. Emerging evidence suggests that they are also critical for immune responses. In addition to memory B and T cells, innate immune cells are transcriptionally hyperactivated by restimulation, with the same or different pathogens known as trained immunity. In this review, we briefly summarize recent progress in chromatin-based regulation of transcriptional memory, and its potential role in immune responses.

Cucurbitacin B Suppresses Hyperglycemia Associated with a High Sugar Diet and Promotes Sleep in Drosophila melanogaster

  • Sang, Jiun;Dhakal, Subash;Lee, Youngseok
    • Molecules and Cells
    • /
    • v.44 no.2
    • /
    • pp.68-78
    • /
    • 2021
  • Secondary metabolites enable plants to protect themselves from herbivorous insects. Among these, cucurbitacin B (cuc-B) is a bitter-tasting compound with promising pharmacological potential. Dietary exposure to cuc-B lowered the hemolymph glucose levels of Drosophila melanogaster fed with a high carbohydrate diet, which is homologous to high blood glucose in humans, and its effect was comparable to that of metformin, a well-known glucose-lowering drug. Furthermore, cuc-B reduced tissue sugar levels and glycogen levels, as well as triacylglycerol levels. Our results thus highlight the potential applicability of this compound to treat chronic metabolic diseases such as diabetes and obesity. Additionally, we analyzed sleep quality and taste-associative memory enhancement after cuc-B and metformin treatment. Both supplements increased nighttime bout length and metformin increased memory consolidation. Therefore, discarded shell of Cucurbitaceae could be processed into health supplements.

A Study on the Characteristics and Programming Conditions of the Scaled SONOSFET NVSM for Flash Memory (플래시메모리를 위한 Scaled SONOSFET NVSM의 프로그래밍 조건과 특성에 관한 연구)

  • 박희정;박승진;남동우;김병철;서광열
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.11
    • /
    • pp.914-920
    • /
    • 2000
  • When the charge-trap type SONOS(polysilicon-oxide-nitride-oxide-semiconductor) cells are used to flash memory, the tunneling program/erase condition to minimize the generation of interface traps was investigated. SONOSFET NVSM(Nonvolatile Semiconductor Memory) cells were fabricated using 0.35 ㎛ standard memory cell embedded logic process including the ONO cell process, based on retrograde twin-well, single-poly, single metal CMOS(Complementary Metal Oxide Semiconductor) process. The thickness of ONO triple-dielectric for the memory cell is tunnel oxide of 24 $\AA$, nitride of 74 $\AA$, blocking oxide of 25 $\AA$, respectively. The program mode(V$\_$g/=7, 8, 9 V, V$\_$s/=V$\_$d/=-3 V, V$\_$b/=floating) and the erase mode(V$\_$g/=-4, -5, -6 V, V$\_$s/=V$\_$d/=floating, V$\_$b/=3 V) by MFN(Modified Fowler-Nordheim) tunneling were used. The proposed programming condition for the flash memory of SONOSFET NVSM cells showed less degradation(ΔV$\_$th/, S, G$\_$m/) characteristics than channel MFN tunneling operation. Also, the program inhibit conditins of unselected cell for separated source lines NOR-type flash memory application were investigated. we demonstrated that the phenomenon of the program disturb did not occur at source/drain voltage of 1 V∼12 V and gate voltage of -8 V∼4 V.

  • PDF

Follicular Helper T (Tfh) Cells in Autoimmune Diseases and Allograft Rejection

  • Yun-Hui Jeon;Youn Soo Choi
    • IMMUNE NETWORK
    • /
    • v.16 no.4
    • /
    • pp.219-232
    • /
    • 2016
  • Production of high affinity antibodies for antigens is a critical component for the immune system to fight off infectious pathogens. However, it could be detrimental to our body when the antigens that B cells recognize are of self-origin. Follicular helper T, or Tfh, cells are required for the generation of germinal center reactions, where high affinity antibody-producing B cells and memory B cells predominantly develop. As such, Tfh cells are considered as targets to prevent B cells from producing high affinity antibodies against self-antigens, when high affinity autoantibodies are responsible for immunopathologies in autoimmune disorders. This review article provides an overview of current understanding of Tfh cells and discusses it in the context of animal models of autoimmune diseases and allograft rejections for generation of novel therapeutic interventions.

CD43 Expression Regulated by IL-12 Signaling Is Associated with Survival of CD8 T Cells

  • Lee, Jee-Boong;Chang, Jun
    • IMMUNE NETWORK
    • /
    • v.10 no.5
    • /
    • pp.153-163
    • /
    • 2010
  • Background: In addition to TCR and costimulatory signals, cytokine signals are required for the differentiation of activated CD8 T cells into memory T cells and their survival. Previously, we have shown that IL-12 priming during initial antigenic stimulation significantly enhanced the survival of activated CD8 T cells and increased the memory cell population. In the present study, we analyzed the mechanisms by which IL-12 priming contributes to activation and survival of CD8 T cells. Methods: We observed dramatically decreased expression of CD43 in activated CD8 T cells by IL-12 priming. We purified $CD43^{lo}$ and $CD43^{hi}$ cells after IL-12 priming and analyzed the function and survival of each population both in vivo and in vitro. Results: Compared to $CD43^{hi}$ effector cells, $CD43^{lo}$ effector CD8 T cells exhibited reduced cytolytic activity and lower granzyme B expression but showed increased survival. $CD43^{lo}$ effector CD8 T cells also showed increased in vivo expansion after adoptive transfer and antigen challenge. The enhanced survival of $CD43^{lo}$ CD8 T cells was also partly associated with CD62L expression. Conclusion: We suggest that CD43 expression regulated by IL-12 priming plays an important role in differentiation and survival of CD8 T cells.

Host Responses from Innate to Adaptive Immunity after Vaccination: Molecular and Cellular Events

  • Kang, Sang-Moo;Compans, Richard W.
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.5-14
    • /
    • 2009
  • The availability of effective vaccines has had the most profound positive effect on improving the quality of public health by preventing infectious diseases. Despite many successful vaccines, there are still old and new emerging pathogens against which there is no vaccine available. A better understanding of how vaccines work for providing protection will help to improve current vaccines as well as to develop effective vaccines against pathogens for which we do not have a proper means to control. Recent studies have focused on innate immunity as the first line of host defense and its role in inducing adaptive immunity; such studies have been an intense area of research, which will reveal the immunological mechanisms how vaccines work for protection. Toll-like receptors (TLRs), a family of receptors for pathogen-associated molecular patterns on cells of the innate immune system, play a critical role in detecting and responding to microbial infections. Importantly, the innate immune system modulates the quantity and quality of long-term T and B cell memory and protective immune responses to pathogens. Limited studies suggest that vaccines which mimic natural infection and/or the structure of pathogens seem to be effective in inducing long-term protective immunity. A better understanding of the similarities and differences of the molecular and cellular events in host responses to vaccination and pathogen infection would enable the rationale for design of novel preventive measures against many challenging pathogens.