DOI QR코드

DOI QR Code

Cucurbitacin B Suppresses Hyperglycemia Associated with a High Sugar Diet and Promotes Sleep in Drosophila melanogaster

  • Sang, Jiun (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Dhakal, Subash (Department of Bio and Fermentation Convergence Technology, Kookmin University) ;
  • Lee, Youngseok (Department of Bio and Fermentation Convergence Technology, Kookmin University)
  • Received : 2020.12.09
  • Accepted : 2021.01.19
  • Published : 2021.02.28

Abstract

Secondary metabolites enable plants to protect themselves from herbivorous insects. Among these, cucurbitacin B (cuc-B) is a bitter-tasting compound with promising pharmacological potential. Dietary exposure to cuc-B lowered the hemolymph glucose levels of Drosophila melanogaster fed with a high carbohydrate diet, which is homologous to high blood glucose in humans, and its effect was comparable to that of metformin, a well-known glucose-lowering drug. Furthermore, cuc-B reduced tissue sugar levels and glycogen levels, as well as triacylglycerol levels. Our results thus highlight the potential applicability of this compound to treat chronic metabolic diseases such as diabetes and obesity. Additionally, we analyzed sleep quality and taste-associative memory enhancement after cuc-B and metformin treatment. Both supplements increased nighttime bout length and metformin increased memory consolidation. Therefore, discarded shell of Cucurbitaceae could be processed into health supplements.

Keywords

Acknowledgement

This work was supported by grants to Y.L. from the Basic Science Research Program of the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A2B6004202) and Korea Environmental Industry and Technology Institute (KEITI) grant funded by the Ministry of Environment of Korea. S.D. was supported by the Global Scholarship Program for Foreign Graduate Students at Kookmin University in Korea.

References

  1. Adeyemi, M.H. (2010). The potential of secondary metabolites in plant material as deterents against insect pests: a review. Afr. J. Pure Appl. Chem. 4, 243-246.
  2. Bailey, C.J. (2017). Metformin: historical overview. Diabetologia 60, 1566-1576. https://doi.org/10.1007/s00125-017-4318-z
  3. Campbell, S.S. and Tobler, I. (1984). Animal sleep: a review of sleep duration across phylogeny. Neurosci. Biobehav. Rev. 8, 269-300. https://doi.org/10.1016/0149-7634(84)90054-X
  4. Catterson, J.H., Knowles-Barley, S., James, K., Heck, M.M., Harmar, A.J., and Hartley, P.S. (2010). Dietary modulation of Drosophila sleep-wake behaviour. PLoS One 5, e12062. https://doi.org/10.1371/journal.pone.0012062
  5. Chen, J.C., Chiu, M.H., Nie, R.L., Cordell, G.A., and Qiu, S.X. (2005). Cucurbitacins and cucurbitane glycosides: structures and biological activities. Nat. Prod. Rep. 22, 386-399. https://doi.org/10.1039/b418841c
  6. Chen, X., Bao, J., Guo, J., Ding, Q., Lu, J., Huang, M., and Wang, Y. (2012). Biological activities and potential molecular targets of cucurbitacins: a focus on cancer. Anticancer Drugs 23, 777-787. https://doi.org/10.1097/CAD.0b013e3283541384
  7. Collier, C.A., Bruce, C.R., Smith, A.C., Lopaschuk, G., and Dyck, D.J. (2006). Metformin counters the insulin-induced suppression of fatty acid oxidation and stimulation of triacylglycerol storage in rodent skeletal muscle. Am. J. Physiol. Endocrinol. Metab. 291, E182-E189. https://doi.org/10.1152/ajpendo.00272.2005
  8. De Truchis, P., Kirstetter, M., Perier, A., Meunier, C., Zucman, D., Force, G., Doll, J., Katlama, C., Rozenbaum, W., and Masson, H. (2007). Reduction in triglyceride level with N-3 polyunsaturated fatty acids in HIV-infected patients taking potent antiretroviral therapy: a randomized prospective study. J. Acquir. Immune Defic. Syndr. 44, 278-285. https://doi.org/10.1097/QAI.0b013e31802c2f3d
  9. Duca, F.A., Cote, C.D., Rasmussen, B.A., Zadeh-Tahmasebi, M., Rutter, G.A., Filippi, B.M., and Lam, T.K. (2015). Metformin activates a duodenal Ampk-dependent pathway to lower hepatic glucose production in rats. Nat. Med. 21, 506. https://doi.org/10.1038/nm.3787
  10. Dus, M., Min, S., Keene, A.C., Lee, G.Y., and Suh, G.S. (2011). Taste-independent detection of the caloric content of sugar in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 108, 11644-11649. https://doi.org/10.1073/pnas.1017096108
  11. Hendricks, J.C., Finn, S.M., Panckeri, K.A., Chavkin, J., Williams, J.A., Sehgal, A., and Pack, A.I. (2000). Rest in Drosophila is a sleep-like state. Neuron 25, 129-138. https://doi.org/10.1016/S0896-6273(00)80877-6
  12. Hundal, R.S., Krssak, M., Dufour, S., Laurent, D., Lebon, V., Chandramouli, V., Inzucchi, S.E., Schumann, W.C., Petersen, K.F., and Landau, B.R. (2000). Mechanism by which metformin reduces glucose production in type 2 diabetes. Diabetes 49, 2063-2069. https://doi.org/10.2337/diabetes.49.12.2063
  13. Ikeda, T., Iwata, K., and Murakami, H. (2000). Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem. Pharmacol. 59, 887-890. https://doi.org/10.1016/S0006-2952(99)00396-2
  14. Kajbaf, F., Fendri, S., Basille-Fantinato, A., Diouf, M., Rose, D., Jounieaux, V., and Lalau, J.D. (2014). The relationship between metformin therapy and sleep quantity and quality in patients with Type 2 diabetes referred for potential sleep disorders. Diabet. Med. 31, 577-580. https://doi.org/10.1111/dme.12362
  15. Kaushik, U., Aeri, V., and Mir, S.R. (2015). Cucurbitacins-an insight into medicinal leads from nature. Pharmacogn. Rev. 9, 12. https://doi.org/10.4103/0973-7847.156314
  16. Kim, K.H., Lee, I.S., Park, J.Y., Kim, Y., An, E.J., and Jang, H.J. (2018). Cucurbitacin b induces hypoglycemic effect in diabetic mice by regulation of amp-activated protein kinase alpha and glucagon-like peptide-1 via bitter taste receptor signaling. Front. Pharmacol. 9, 1071. https://doi.org/10.3389/fphar.2018.01071
  17. Kim, S.H., Lee, Y., Akitake, B., Woodward, O.M., Guggino, W.B., and Montell, C. (2010). Drosophila TRPA1 channel mediates chemical avoidance in gustatory receptor neurons. Proc. Natl. Acad. Sci. U. S. A. 107, 8440-8445. https://doi.org/10.1073/pnas.1001425107
  18. Kim, Y.C., Choi, D., Cha, A., Lee, Y.G., Baek, N.I., Rimal, S., Sang, J., Lee, Y., and Lee, S. (2020). Critical enzymes for biosynthesis of cucurbitacin derivatives in watermelon and their biological significance. Commun. Biol. 3, 1-11. https://doi.org/10.1038/s42003-019-0734-6
  19. Kirkhart, C. and Scott, K. (2015). Gustatory learning and processing in the Drosophila mushroom bodies. J. Neurosci. 35, 5950-5958. https://doi.org/10.1523/JNEUROSCI.3930-14.2015
  20. Lee, Y., Kang, M.J., Shim, J., Cheong, C.U., Moon, S.J., and Montell, C. (2012). Gustatory receptors required for avoiding the insecticide L-canavanine. J. Neurosci. 32, 1429-1435. https://doi.org/10.1523/JNEUROSCI.4630-11.2012
  21. Lee, Y., Kim, S.H., and Montell, C. (2010). Avoiding DEET through insect gustatory receptors. Neuron 67, 555-561. https://doi.org/10.1016/j.neuron.2010.07.006
  22. Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 106, 4495-4500. https://doi.org/10.1073/pnas.0811744106
  23. Lin, H.Z., Yang, S.Q., Chuckaree, C., Kuhajda, F., Ronnet, G., and Diehl, A.M. (2000). Metformin reverses fatty liver disease in obese, leptin-deficient mice. Nat. Med. 6, 998-1003. https://doi.org/10.1038/79697
  24. Madiraju, A.K., Erion, D.M., Rahimi, Y., Zhang, X.M., Braddock, D.T., Albright, R.A., Prigaro, B.J., Wood, J.L., Bhanot, S., and MacDonald, M.J. (2014). Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase. Nature 510, 542-546. https://doi.org/10.1038/nature13270
  25. Masek, P., Worden, K., Aso, Y., Rubin, G.M., and Keene, A.C. (2015). A dopamine-modulated neural circuit regulating aversive taste memory in Drosophila. Curr. Biol. 25, 1535-1541. https://doi.org/10.1016/j.cub.2015.04.027
  26. Meunier, N., Belgacem, Y.H., and Martin, J.R. (2007). Regulation of feeding behaviour and locomotor activity by takeout in Drosophila. J. Exp. Biol. 210, 1424-1434. https://doi.org/10.1242/jeb.02755
  27. Molyneux, R.J., Lee, S.T., Gardner, D.R., Panter, K.E., and James, L.F. (2007). Phytochemicals: the good, the bad and the ugly? Phytochemistry 68, 2973-2985. https://doi.org/10.1016/j.phytochem.2007.09.004
  28. Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-to-male courtship. Curr. Biol. 19, 1623-1627. https://doi.org/10.1016/j.cub.2009.07.061
  29. Ohadoma, S. and Michael, H. (2011). Effects of co-administration of methanol leaf extract of Catharanthus roseus on the hypoglycemic activity of metformin and glibenclamide in rats. Asian Pac. J. Trop. Med. 4, 475-477. https://doi.org/10.1016/S1995-7645(11)60129-6
  30. Oliveira, D.T.d., Fernandes, I.d.C., Sousa, G.G.d., Santos, T.A.P.d., Paiva, N.C.N.d., Carneiro, C.M., Evangelista, E.A., Barboza, N.R., and Guerra-Sa, R. (2020). High-sugar diet leads to obesity and metabolic diseases in ad libitum-fed rats irrespective of caloric intake. Arch. Endocrinol. Metab. 64, 71-81. https://doi.org/10.20945/2359-3997000000199
  31. Park, J.H. and Kwon, J.Y. (2011). A systematic analysis of Drosophila gustatory receptor gene expression in abdominal neurons which project to the central nervous system. Mol. Cells 32, 375. https://doi.org/10.1007/s10059-011-0128-1
  32. Pintana, H., Apaijai, N., Pratchayasakul, W., Chattipakorn, N., and Chattipakorn, S.C. (2012). Effects of metformin on learning and memory behaviors and brain mitochondrial functions in high fat diet induced insulin resistant rats. Life Sci. 91, 409-414. https://doi.org/10.1016/j.lfs.2012.08.017
  33. Poudel, S. and Lee, Y. (2018). Impaired taste associative memory and memory enhancement by feeding omija in Parkinson's disease fly model. Mol. Cells 41, 646. https://doi.org/10.14348/molcells.2018.0014
  34. Pulito, C., Sanli, T., Rana, P., Muti, P., Blandino, G., and Strano, S. (2013). Metformin: on ongoing journey across diabetes, cancer therapy and prevention. Metabolites 3, 1051-1075. https://doi.org/10.3390/metabo3041051
  35. Rimal, S. and Lee, Y. (2019). Molecular sensor of nicotine in taste of Drosophila melanogaster. Insect Biochem. Mol. Biol. 111, 103178. https://doi.org/10.1016/j.ibmb.2019.103178
  36. Rimal, S., Sang, J., Dhakal, S., and Lee, Y. (2020). Cucurbitacin B activates bitter-sensing gustatory receptor neurons via gustatory receptor 33a in Drosophila melanogaster. Mol. Cells 43, 530. https://doi.org/10.14348/molcells.2020.0019
  37. Rovenko, B.M., Kubrak, O.I., Gospodaryov, D.V., Perkhulyn, N.V., Yurkevych, I.S., Sanz, A., Lushchak, V., and Lushchak, V.I. (2015). High sucrose consumption promotes obesity whereas its low consumption induces oxidative stress in Drosophila melanogaster. J. Insect Physiol. 79, 42-54. https://doi.org/10.1016/j.jinsphys.2015.05.007
  38. Rowan, J.A., Hague, W.M., Gao, W., Battin, M.R., and Moore, M.P. (2008). Metformin versus insulin for the treatment of gestational diabetes. N. Engl. J. Med. 358, 2003-2015. https://doi.org/10.1056/NEJMoa0707193
  39. Sang, J., Rimal, S., and Lee, Y. (2019). Gustatory receptor 28b is necessary for avoiding saponin in Drosophila melanogaster. EMBO Rep. 20, e47328.
  40. Seetharaman, S. (2016). The influences of dietary sugar and related metabolic disorders on cognitive aging and dementia. In Molecular Basis of Nutrition and Aging, M. Malavolta, ed. (San Diego: Elsevier), pp. 331-344.
  41. Shaw, P.J., Cirelli, C., Greenspan, R.J., and Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science 287, 1834-1837. https://doi.org/10.1126/science.287.5459.1834
  42. Slack, C., Foley, A., and Partridge, L. (2012). Activation of AMPK by the putative dietary restriction mimetic metformin is insufficient to extend lifespan in Drosophila. PLoS One 7, e47699. https://doi.org/10.1371/journal.pone.0047699
  43. Thimmappa, R., Geisler, K., Louveau, T., O'Maille, P., and Osbourn, A. (2014). Triterpene biosynthesis in plants. Annu. Rev. Plant Biol. 65, 225-257. https://doi.org/10.1146/annurev-arplant-050312-120229
  44. Vanderheyden, W.M., Gerstner, J.R., Tanenhaus, A., Yin, J.C., and Shaw, P.J. (2013). ERK phosphorylation regulates sleep and plasticity in Drosophila. PLoS One 8, e81554. https://doi.org/10.1371/journal.pone.0081554
  45. Vella, S., Buetow, L., Royle, P., Livingstone, S., Colhoun, H., and Petrie, J. (2010). The use of metformin in type 1 diabetes: a systematic review of efficacy. Diabetologia 53, 809-820. https://doi.org/10.1007/s00125-009-1636-9
  46. Wigglesworth, V. (1949). The utilization of reserve substances in Drosophila during flight. J. Exp. Biol. 26, 150-163. https://doi.org/10.1242/jeb.26.2.150
  47. Yeh, S.H.H., Shie, F.S., Liu, H.K., Yao, H.H., Kao, P.C., Lee, Y.H., Chen, L.M., Hsu, S.M., Chao, L.J., and Wu, K.W. (2020). A high-sucrose diet aggravates Alzheimer's disease pathology, attenuates hypothalamic leptin signaling, and impairs food-anticipatory activity in APPswe/PS1dE9 mice. Neurobiol. Aging 90, 60-74. https://doi.org/10.1016/j.neurobiolaging.2019.11.018
  48. Zou, C., Liu, G., Liu, S., Liu, S., Song, Q., Wang, J., Feng, Q., Su, Y., and Li, S. (2018). Cucurbitacin B acts a potential insect growth regulator by antagonizing 20-hydroxyecdysone activity. Pest Manag. Sci. 74, 1394-1403. https://doi.org/10.1002/ps.4817

Cited by

  1. Histamine gustatory aversion in Drosophila melanogaster vol.134, 2021, https://doi.org/10.1016/j.ibmb.2021.103586