DOI QR코드

DOI QR Code

A "Prime and Deploy" Strategy for Universal Influenza Vaccine Targeting Nucleoprotein Induces Lung-Resident Memory CD8 T cells

  • Haerynn Chung (Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Eun-Ah Kim (Graduate School of Pharmaceutical Sciences, Ewha Womans University) ;
  • Jun Chang (Graduate School of Pharmaceutical Sciences, Ewha Womans University)
  • Received : 2020.11.30
  • Accepted : 2021.08.13
  • Published : 2021.08.31

Abstract

Lung-resident memory T cells (TRM) play an essential role in protecting against pulmonary virus infection. Parenteral administration of DNA vaccine is generally not sufficient to induce lung CD8 TRM cells. This study investigates whether intramuscularly administered DNA vaccine expressing the nucleoprotein (NP) induces lung TRM cells and protects against the influenza B virus. The results show that DNA vaccination poorly generates lung TRM cells and massive secondary effector CD8 T cells entering the lungs after challenge infection do not offer sufficient protection. Nonetheless, intranasal administration of non-replicating adenovirus vector expressing no Ag following priming DNA vaccination deploys NP-specific CD8 TRM cells in the lungs, which subsequently offers complete protection. This novel 'prime and deploy' strategy could be a promising regimen for a universal influenza vaccine targeting the conserved NP Ag.

Keywords

Acknowledgement

We are grateful to the members of the immunology laboratory for their helpful discussion and technical assistance. The authors wish to thank all members of the HYEHWA FORUM for their helpful comments and creative motivation. This study was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health & Welfare, Republic of Korea (grant No. HV20C0049).

References

  1. Takamura S, Yagi H, Hakata Y, Motozono C, McMaster SR, Masumoto T, Fujisawa M, Chikaishi T, Komeda J, Itoh J, et al. Specific niches for lung-resident memory CD8+ T cells at the site of tissue regeneration enable CD69-independent maintenance. J Exp Med 2016;213:3057-3073.  https://doi.org/10.1084/jem.20160938
  2. Turner DL, Bickham KL, Thome JJ, Kim CY, D'Ovidio F, Wherry EJ, Farber DL. Lung niches for the generation and maintenance of tissue-resident memory T cells. Mucosal Immunol 2014;7:501-510.  https://doi.org/10.1038/mi.2013.67
  3. Wu T, Hu Y, Lee YT, Bouchard KR, Benechet A, Khanna K, Cauley LS. Lung-resident memory CD8 T cells (TRM) are indispensable for optimal cross-protection against pulmonary virus infection. J Leukoc Biol 2014;95:215-224. 
  4. Choi SY, Suh YS, Cho JH, Jin HT, Chang J, Sung YC. Enhancement of DNA vaccine-induced immune responses by influenza virus np gene. Immune Netw 2009;9:169-178. https://doi.org/10.4110/in.2009.9.5.169
  5. Epstein SL, Kong WP, Misplon JA, Lo CY, Tumpey TM, Xu L, Nabel GJ. Protection against multiple influenza A subtypes by vaccination with highly conserved nucleoprotein. Vaccine 2005;23:5404-5410.  https://doi.org/10.1016/j.vaccine.2005.04.047
  6. Roy MJ, Wu MS, Barr LJ, Fuller JT, Tussey LG, Speller S, Culp J, Burkholder JK, Swain WF, Dixon RM, et al. Induction of antigen-specific CD8+ T cells, T helper cells, and protective levels of antibody in humans by particle-mediated administration of a hepatitis B virus DNA vaccine. Vaccine 2000;19:764-778.  https://doi.org/10.1016/S0264-410X(00)00302-9
  7. Wang R, Epstein J, Baraceros FM, Gorak EJ, Charoenvit Y, Carucci DJ, Hedstrom RC, Rahardjo N, Gay T, Hobart P, et al. Induction of CD4(+) T cell-dependent CD8(+) type 1 responses in humans by a malaria DNA vaccine. Proc Natl Acad Sci U S A 2001;98:10817-10822.  https://doi.org/10.1073/pnas.181123498
  8. Cuburu N, Kim R, Guittard GC, Thompson CD, Day PM, Hamm DE, Pang YYS, Graham BS, Lowy DR, Schiller JT. A prime-pull-amplify vaccination strategy to maximize induction of circulating and genitalresident intraepithelial CD8+  memory T cells. J Immunol 2019;202:1250-1264.  https://doi.org/10.4049/jimmunol.1800219
  9. Haddadi S, Vaseghi-Shanjani M, Yao Y, Afkhami S, D'Agostino MR, Zganiacz A, Jeyanathan M, Xing Z. Mucosal-pull induction of lung-resident memory CD8 T cells in parenteral tb vaccine-primed hosts requires cognate antigens and CD4 T cells. Front Immunol 2019;10:2075. 
  10. McMaster SR, Wein AN, Dunbar PR, Hayward SL, Cartwright EK, Denning TL, Kohlmeier JE. Pulmonary antigen encounter regulates the establishment of tissue-resident CD8 memory T cells in the lung airways and parenchyma. Mucosal Immunol 2018;11:1071-1078.  https://doi.org/10.1038/s41385-018-0003-x
  11. Santosuosso M, McCormick S, Roediger E, Zhang X, Zganiacz A, Lichty BD, Xing Z. Mucosal luminal manipulation of T cell geography switches on protective efficacy by otherwise ineffective parenteral genetic immunization. J Immunol 2007;178:2387-2395.  https://doi.org/10.4049/jimmunol.178.4.2387
  12. Jeyanathan M, Damjanovic D, Shaler CR, Lai R, Wortzman M, Yin C, Zganiacz A, Lichty BD, Xing Z. Differentially imprinted innate immunity by mucosal boost vaccination determines antituberculosis immune protective outcomes, independent of T-cell immunity. Mucosal Immunol 2013;6:612-625.  https://doi.org/10.1038/mi.2012.103
  13. Liu Q, Zaiss AK, Colarusso P, Patel K, Haljan G, Wickham TJ, Muruve DA. The role of capsid-endothelial interactions in the innate immune response to adenovirus vectors. Hum Gene Ther 2003;14:627-643.  https://doi.org/10.1089/104303403321618146
  14. Rhee EG, Blattman JN, Kasturi SP, Kelley RP, Kaufman DR, Lynch DM, La Porte A, Simmons NL, Clark SL, Pulendran B, et al. Multiple innate immune pathways contribute to the immunogenicity of recombinant adenovirus vaccine vectors. J Virol 2011;85:315-323.  https://doi.org/10.1128/JVI.01597-10
  15. Kim MH, Kang JO, Kim JY, Jung HE, Lee HK, Chang J. Single mucosal vaccination targeting nucleoprotein provides broad protection against two lineages of influenza B virus. Antiviral Res 2019;163:19-28.  https://doi.org/10.1016/j.antiviral.2019.01.002
  16. Park SH, Lee SR, Hyun BH, Kim BM, Sung YC. Codelivery of PEG-IFN-alpha inhibits HCV DNA vaccineinduced T cell responses but not humoral responses in African green monkeys. Vaccine 2008;26:3978-3983.  https://doi.org/10.1016/j.vaccine.2008.05.017
  17. Seo SH, Jin HT, Park SH, Youn JI, Sung YC. Optimal induction of HPV DNA vaccine-induced CD8+ T cell responses and therapeutic antitumor effect by antigen engineering and electroporation. Vaccine 2009;27:5906-5912.  https://doi.org/10.1016/j.vaccine.2009.07.033
  18. Donis RO, Influenza Cell Culture Working GroupDavis CT, Foust A, Hossain MJ, Johnson A, Klimov A, Loughlin R, Xu X, Tsai T, et al. Performance characteristics of qualified cell lines for isolation and propagation of influenza viruses for vaccine manufacturing. Vaccine 2014;32:6583-6590.  https://doi.org/10.1016/j.vaccine.2014.06.045
  19. Shin D, Park KJ, Lee H, Cho EY, Kim MS, Hwang MH, Kim SI, Ahn DH. Comparison of immunogenicity of cell-and egg-passaged viruses for manufacturing MDCK cell culture-based influenza vaccines. Virus Res 2015;204:40-46. 
  20. Altman JD, Moss PA, Goulder PJ, Barouch DH, McHeyzer-Williams MG, Bell JI, McMichael AJ, Davis MM. Phenotypic analysis of antigen-specific T lymphocytes. Science 1996;274:94-96. https://doi.org/10.1126/science.274.5284.94
  21. Hillaire MLB, Osterhaus ADME, Rimmelzwaan GF. Induction of virus-specific cytotoxic T lymphocytes as a basis for the development of broadly protective influenza vaccines. J Biomed Biotechnol 2011;2011:939860. 
  22. Hillaire MLB, van Trierum SE, Kreijtz JHCM, Bodewes R, Geelhoed-Mieras MM, Nieuwkoop NJ, Fouchier RAM, Kuiken T, Osterhaus ADME, Rimmelzwaan GF. Cross-protective immunity against influenza pH1N1 2009 viruses induced by seasonal influenza A (H3N2) virus is mediated by virus-specific T-cells. J Gen Virol 2011;92:2339-2349.  https://doi.org/10.1099/vir.0.033076-0
  23. van de Sandt CE, Dou Y, Vogelzang-van Trierum SE, Westgeest KB, Pronk MR, Osterhaus ADME, Fouchier RAM, Rimmelzwaan GF, Hillaire MLB. Influenza B virus-specific CD8+ T-lymphocytes strongly crossreact with viruses of the opposing influenza B lineage. J Gen Virol 2015;96:2061-2073.  https://doi.org/10.1099/vir.0.000156
  24. Baranowska M, Hauge AG, Hoornaert C, Bogen B, Grodeland G. Targeting of nucleoprotein to chemokine receptors by DNA vaccination results in increased CD8(+)-mediated cross protection against influenza. Vaccine 2015;33:6988-6996.  https://doi.org/10.1016/j.vaccine.2015.08.094
  25. Kim SH, Kim JY, Choi Y, Nguyen HH, Song MK, Chang J. Mucosal vaccination with recombinant adenovirus encoding nucleoprotein provides potent protection against influenza virus infection. PLoS One 2013;8:e75460. 
  26. Mueller SN, Mackay LK. Tissue-resident memory T cells: local specialists in immune defence. Nat Rev Immunol 2016;16:79-89. 
  27. Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity 2014;41:886-897.  https://doi.org/10.1016/j.immuni.2014.12.007
  28. Takamura S, Roberts AD, Jelley-Gibbs DM, Wittmer ST, Kohlmeier JE, Woodland DL. The route of priming influences the ability of respiratory virus-specific memory CD8+ T cells to be activated by residual antigen. J Exp Med 2010;207:1153-1160.  https://doi.org/10.1084/jem.20090283
  29. Belyakov IM, Ahlers JD. What role does the route of immunization play in the generation of protective immunity against mucosal pathogens? J Immunol 2009;183:6883-6892.  https://doi.org/10.4049/jimmunol.0901466
  30. Slutter B, Van Braeckel-Budimir N, Abboud G, Varga SM, Salek-Ardakani S, Harty JT. Dynamics of influenzainduced lung-resident memory T cells underlie waning heterosubtypic immunity. Sci Immunol 2017;2:eaag2031. 
  31. Hayward SL, Scharer CD, Cartwright EK, Takamura S, Li ZRT, Boss JM, Kohlmeier JE. Environmental cues regulate epigenetic reprogramming of airway-resident memory CD8+  T cells. Nat Immunol 2020;21:309-320.  https://doi.org/10.1038/s41590-019-0584-x
  32. McMaster SR, Wilson JJ, Wang H, Kohlmeier JE. Airway-resident memory CD8 T cells provide antigenspecific protection against respiratory virus challenge through rapid IFN-γ production. J Immunol 2015;195:203-209. 
  33. Takamura S, Kato S, Motozono C, Shimaoka T, Ueha S, Matsuo K, Miyauchi K, Masumoto T, Katsushima A, Nakayama T, et al. Interstitial-resident memory CD8+  T cells sustain frontline epithelial memory in the lung. J Exp Med 2019;216:2736-2747.  https://doi.org/10.1084/jem.20190557
  34. Ely KH, Cookenham T, Roberts AD, Woodland DL. Memory T cell populations in the lung airways are maintained by continual recruitment. J Immunol 2006;176:537-543.  https://doi.org/10.4049/jimmunol.176.1.537
  35. Clemens EB, van de Sandt C, Wong SS, Wakim LM, Valkenburg SA. Harnessing the power of T cells: the promising hope for a universal influenza vaccine. Vaccines (Basel) 2018;6:18. 
  36. Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Ther 2004;10:616-629.  https://doi.org/10.1016/j.ymthe.2004.07.013
  37. Medzhitov R, Janeway C Jr. Innate immune recognition: mechanisms and pathways. Immunol Rev 2000;173:89-97. 
  38. Yao Y, Jeyanathan M, Haddadi S, Barra NG, Vaseghi-Shanjani M, Damjanovic D, Lai R, Afkhami S, Chen Y, Dvorkin-Gheva A, et al. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 2018;175:1634-1650.e17. https://doi.org/10.1016/j.cell.2018.09.042
  39. Tamanini A, Nicolis E, Bonizzato A, Bezzerri V, Melotti P, Assael BM, Cabrini G. Interaction of adenovirus type 5 fiber with the coxsackievirus and adenovirus receptor activates inflammatory response in human respiratory cells. J Virol 2006;80:11241-11254.  https://doi.org/10.1128/JVI.00721-06
  40. Liu Q, Muruve DA. Molecular basis of the inflammatory response to adenovirus vectors. Gene Ther 2003;10:935-940. 
  41. Li E, Stupack DG, Brown SL, Klemke R, Schlaepfer DD, Nemerow GR. Association of p130CAS with phosphatidylinositol-3-OH kinase mediates adenovirus cell entry. J Biol Chem 2000;275:14729-14735.  https://doi.org/10.1074/jbc.275.19.14729
  42. Suomalainen M, Nakano MY, Boucke K, Keller S, Greber UF. Adenovirus-activated PKA and p38/MAPK pathways boost microtubule-mediated nuclear targeting of virus. EMBO J 2001;20:1310-1319.  https://doi.org/10.1093/emboj/20.6.1310
  43. Tibbles LA, Spurrell JCL, Bowen GP, Liu Q, Lam M, Zaiss AK, Robbins SM, Hollenberg MD, Wickham TJ, Muruve DA. Activation of p38 and ERK signaling during adenovirus vector cell entry lead to expression of the C-X-C chemokine IP-10. J Virol 2002;76:1559-1568.  https://doi.org/10.1128/JVI.76.4.1559-1568.2002
  44. Tamanini A, Rolfini R, Nicolis E, Melotti P, Cabrini G. MAP kinases and NF-kappaB collaborate to induce ICAM-1 gene expression in the early phase of adenovirus infection. Virology 2003;307:228-242.  https://doi.org/10.1016/S0042-6822(02)00078-8
  45. Bruder JT, Kovesdi I. Adenovirus infection stimulates the Raf/MAPK signaling pathway and induces interleukin-8 expression. J Virol 1997;71:398-404.  https://doi.org/10.1128/jvi.71.1.398-404.1997
  46. Turner DL, Farber DL. Mucosal resident memory CD4 T cells in protection and immunopathology. Front Immunol 2014;5:331. 
  47. Sridhar S, Begom S, Bermingham A, Hoschler K, Adamson W, Carman W, Bean T, Barclay W, Deeks JJ, Lalvani A. Cellular immune correlates of protection against symptomatic pandemic influenza. Nat Med 2013;19:1305-1312.