• Title/Summary/Keyword: membranes

Search Result 3,797, Processing Time 0.025 seconds

Fabrication and separation performance of polyethersulfone/sulfonated TiO2 (PES-STiO2) ultrafiltration membranes for fouling mitigation

  • Ayyaru, Sivasankaran;Ahn, Young-Ho
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.199-209
    • /
    • 2018
  • Polyethersulfone (PES)/sulfonated $TiO_2$ ($STiO_2$) nanoparticles (NPs) UF blended membranes were fabricated with different loadings of $STiO_2$. The modified membranes exhibited significant improvement in surface roughness, porosity, and pore size when compared to the PES membrane. The $P-STiO_2$ 1 and $P-TiO_2$ 1 blended membranes exhibited higher water flux, approximately 102.4% and 62.6%, respectively, compared to PES. SPP-$STiO_2$ and $P-STiO_2$ showed lower Rir fouling resistance than the $P-TiO_2$ blended membrane. Overall, the $STiO_2$-blended membranes provide high hydrophilicity permeability, anti-fouling performance, and improved BSA rejection attributed to the hydrogen bonding force and more electrostatic repulsion properties of $STiO_2$.

Progress in the modification of reverse osmosis (RO) membranes for enhanced performance

  • Otitoju, T.A.;Saari, R.A.;Ahmada, A.L.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.52-71
    • /
    • 2018
  • RO membranes, the core elements for RO process formed using polyamide, have found prominent space in membrane technology. RO membranes with better application perspective could be achieved by precise controlling the kinetics of IP reaction and surface modification strategy. Despite huge progresses, great challenges still exist in trade-off between flux, rejections and fouling. More works are necessary to enhance the performance and stability of RO membranes via surface modification. Further insights into the use of natural monomers are necessary. It is anticipated that this article can provide clues for further in-depth evaluation and research in exploring more advanced RO membranes.

Effects of the Membrane Materials on the Filtration Characteristic in the Membrane Separation-activated Sludge Process (막 재질에 따른 막분리활성오니법의 여과 특성)

  • Kim, Hyung-Soo;Cho, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.12 no.2
    • /
    • pp.42-49
    • /
    • 1998
  • By checking the variations of the raw water quality and MLSS, the effects of the membrane materials on permeable flux and quality of the treated water were investigated in this study. Due to the stability for high variations of MLSS, tubular type membranes were selected. Polysulfone group membranes and polyamide group membranes were tested. The crossflow operation mode was adapted, because membrane fouling problems could be easily controlled by adjusting the linear velocity. Due to the high concentration of the raw water, polyamide group membranes were originally expected to achieve two times higher permeable fluxes. However, difference was only approximately $20l/m^2{\cdot}h$ at $3kgf/cm^2$. It might be resulted from the high concentration of organic materials in the effluent of the RBC process. For the quality of the treated water, polyamide group membranes were slightly less effective. It might be resulted from the fact that polysulfone group membranes had more adsorptive capacities for the organic materials. The effects of temperature on the permeable flux were found to be significant. Despite of the irregular injection of raw water, the quality of the treated water was kept stable.

  • PDF

Fabrication of Cross-linked Nano-Fibrous Chitosan Membranes and Their Biocompatibility Evaluation

  • Nguyen, Thi-Hiep;Lee, Seong-Jin;Min, Young-Ki;Lee, Byong-Taek
    • Korean Journal of Materials Research
    • /
    • v.21 no.2
    • /
    • pp.125-132
    • /
    • 2011
  • Fibrous chitosan membranes were fabricated as a substrate for skin applications using an electro-spinning process with different solvents and varying concentrations. Scanning electron microscopy (SEM) images confirmed that the formation of the chitosan fibrous membrane in trifluoroacetic acid was better than that in acetic acid. Fourier transform infrared spectroscopy showed that the chitosan fibers were cross-linked with glutaraldehyde, and that the cytotoxicity of the aldehyde groups was reduced by glycine and washing by NaOH and DI water. Chitosan cross-linked fibrous membranes were insoluble in water and could be washed thoroughly to wash away glycine and excess NaOH and prevent the infiltration of other water soluble bio-toxic agents using DI water. MTT assay method was employed to test the cytotoxicity of chitosan membranes during fabricating, treating and washing processes. After the dehydration of cell cultured chitosan membranes, cell attachment behavior on the material was evaluated using SEM method. Effect of the treatment processes on the biocompatibility of the chitosan membranes was shown by comparing of filopodium and lamellipodium of fibroblast cells on grown washed and unwashed chitosan fibrous membrane. The MTT assay and SEM morphology confirmed that the washed chitosan fibrous membrane increased cell attachment and cell growth, and decreased toxicity compared to results for the unwashed chitosan fibrous membrane.

Synthesis and Application of $CeO_2-Sm_2O_3$ Solid Electrolyte Membranes with Electronic and Ionic Conductivities (전자 및 이온 전도성 $CeO_2-Sm_2O_3$ 고체 전해질 막의 합성 및 응용)

  • 현상훈;권재환;김승구;김계태
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.4
    • /
    • pp.355-363
    • /
    • 1998
  • The oxygen flux of SDC ($Sm_2O_3\;doped\;CeO_2$) solid electrolyte membranes with electronic and oxygen ion-ic conductivities has been investigated as a basic research in order to develop the conversion process of na-tural gas to syngas using the ceramic membrane reactor. Tube type membranes(1 mm thickness) were fa-bricated by slip casting of SDC powders prepared by the oxalate coprecipitaion method. Dense oxygen per-meation membranes(0.1 mm thickness) could be synthesized via sintering at $1450^{\circ}C$ for 2h and their re-lative density was over 95% The oxygen flux through SDC membranes doped 20mol% $Sm_15$ was about $1.13{\times}10^{-5}\;mol/m_2{\cdot}sec$ at low temperature around $800^{\circ}C$. In addition the SDC membranes showed a good thermaal stability for a long period of service.

  • PDF

A Study on the Electrochemical Properties of SPEEK/PWA/Silica Composite Membranes (SPEEK/PWA/Silica 복합막의 전기화학적 특성에 관한 연구)

  • Oh, Sae-Joong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.5
    • /
    • pp.2529-2535
    • /
    • 2013
  • Sol-gel method was utilized to prepare SPEEK/PWA electrolyte composite membranes. TEOS was used as a precursor and phosphotungstic acid(PWA) as a catalyst for the sol-gel reaction. It was observed through FE-SEM analysis that the PWA and silica nanoparticles were uniformly dispersed into the polymer matrix. The water uptake of SPEEK/PWA/silica composite membranes was less affected by TEOS concentration at higher TEOS contents, while the water uptake decreased as TEOS concentration increased at lower TEOS contents. The proton conductivity of the composite membranes showed similar trend as the water uptake of the composite membranes. The methanol permeability of SPEEK/PWA/silica composite membranes decreased as TEOS concentration increased.

Study of High-k Sensing Membranes for the High Quality Electrolyte Insulator Semiconductor pH Sensor (High-k 감지막 평가를 통한 고성능 고감도의 Electrolyte-Insulator-Semiconductor pH센서 제작)

  • Bae, Tae-Eon;Jang, Hyun-June;Cho, Won-Ju
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.2
    • /
    • pp.125-128
    • /
    • 2012
  • We fabricated the electrolyte-insulator-semiconductor (EIS) devices with various high-k sensing membranes to realize a high quality pH sensor. The sensing properties of each high-k dielectric material were compared with those of conventional $SiO_2$ (O) and $SiO_2/Si_3N_4$ (ON) membranes. As a result, the high-k sensing membranes demonstrated better sensitivity and stability than the O and ON membranes. Especially, the $SiO_2/HfO_2$ (OH) stacked layer showed a high sensitivity and the $SiO_2/Al_2O_3$ (OA) stacked layer exhibited an excellent chemical stability. In conclusion, the high-k sensing membranes are expected to have excellent operating characteristics in terms of sensitivity and chemical stability for the biosensor application.

Reference Electrode at Molten Salt: A Comparative Analysis of Electroceramic Membranes

  • Yoon, Seokjoo;Kang, Dokyu;Sohn, Sungjune;Park, Jaeyeong;Lee, Minho;Choi, Sungyeol
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.2
    • /
    • pp.143-155
    • /
    • 2020
  • A reference electrode is important for controlling electrochemical reactions. Evaluating properties such as the reduction potential of the elements is necessary to optimize the electrochemical processes in pyroprocessing, especially in a multicomponent environment. In molten chloride systems, which are widely used in pyroprocessing, a reference electrode is made by enclosing the silver wire and molten salt solution containing silver chloride into the membranes. However, owing to the high temperature of the molten salt, the choice of the membrane for the reference electrode is limited. In this study, three types of electroceramic, mullite, Pyrex, and quartz, were compared as reference electrode membranes. They are widely used in molten salt electrochemical processes. The potential measurements between the two reference electrode systems showed that the mullite membrane has potential deviations of approximately 50 mV or less at temperatures higher than 650℃, Pyrex at temperatures lower than 500℃, and quartz at temperatures higher than 800℃. Cyclic voltammograms with different membranes showed a significant potential shift when different membranes were utilized. This research demonstrated the uncertainties of potential measurement by a single membrane and the potential shift that occurs because of the use of different membranes.

Development of blend membrane by sulfonated polyethersulfone for whey ultrafiltration

  • Esfandian, Fatemeh;Peyravi, Majid;Qoreyshi, Ali Asqar;Jahanshahi, Mohsen
    • Membrane and Water Treatment
    • /
    • v.7 no.2
    • /
    • pp.155-173
    • /
    • 2016
  • The present work has been focused on the development of polysulfone (PSf) ultrafiltration membrane via blending by sulfonated polyethersulfone (SPES) in order to permeability enhancement for ultrafiltration of cheese whey. In this regards, sulfonation of polyethersulfone was carried out and the degree of sulfonation was estimated. The effect of blend ratio on morphology, porosity, permeation and fouling of PSf / SPES membranes was investigated. Filtration experiments of whey were conducted for separation of macromolecules and proteins from the lactose enrichment phase. The morphology and performance of membranes were evaluated using different techniques such SEM, AFM, and contact angle measurements. The contact angle measurement showed that the hydrophilicity of membrane was increased by adding SPES. According to AFM images, PSf / SPES membranes exhibited lower roughness compared to neat PSf membrane. The water and whey flux of these membranes were higher than neat membrane. However, flux was decreased when the PSf / SPES blend ratio was 0/100. It can be attributed to pore size and morphology changes. Further, fouling parameters of PSf membrane were improved after blending. The blend membranes show a great potential to be used practically in proteins separation from cheese whey.

Preparation of Polyvinylpyrrolidone/AgBF4/Al(NO3)3 Electrolyte Membranes for Facilitated Gas Transport (기체 촉진수송을 위한 polyvinylpyrrolidone/AgBF4/Al(NO3)3 전해질 분리막 제조)

  • Yoon, Ki Wan;Kang, Sang Wook
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.38-42
    • /
    • 2016
  • Polyvinylpyrrolidone (PVP), which is glassy polymer to have amide functional group, was induced to fabricate the facilitated olefin transport membranes for olefin/paraffin separation. Separation performance for the mixed gas consisting of propylene and propane (50 : 50 vol%) was measured by gas chromatography and bubble flow meter. The properties of membranes were confirmed by scanning electron microscope and FT-IR. The results of long-term separation tests showed the selectivity of 15 and permeance of 1.3 GPU. The membranes was compared with poly(2-ethyl-2-oxazoline) $(POZ)/AgBF_4/Al(NO_3)_3$ membranes and the characteristics were confirmed as polymer matrix for facilitated transport membranes.