Browse > Article
http://dx.doi.org/10.7733/jnfcwt.2020.18.2.143

Reference Electrode at Molten Salt: A Comparative Analysis of Electroceramic Membranes  

Yoon, Seokjoo (Korea Advanced Institute of Science and Technology)
Kang, Dokyu (Korea Advanced Institute of Science and Technology)
Sohn, Sungjune (Korea Atomic Energy Research Institute)
Park, Jaeyeong (Ulsan National Institute of Science and Technology)
Lee, Minho (Korea Advanced Institute of Science and Technology)
Choi, Sungyeol (Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT) / v.18, no.2, 2020 , pp. 143-155 More about this Journal
Abstract
A reference electrode is important for controlling electrochemical reactions. Evaluating properties such as the reduction potential of the elements is necessary to optimize the electrochemical processes in pyroprocessing, especially in a multicomponent environment. In molten chloride systems, which are widely used in pyroprocessing, a reference electrode is made by enclosing the silver wire and molten salt solution containing silver chloride into the membranes. However, owing to the high temperature of the molten salt, the choice of the membrane for the reference electrode is limited. In this study, three types of electroceramic, mullite, Pyrex, and quartz, were compared as reference electrode membranes. They are widely used in molten salt electrochemical processes. The potential measurements between the two reference electrode systems showed that the mullite membrane has potential deviations of approximately 50 mV or less at temperatures higher than 650℃, Pyrex at temperatures lower than 500℃, and quartz at temperatures higher than 800℃. Cyclic voltammograms with different membranes showed a significant potential shift when different membranes were utilized. This research demonstrated the uncertainties of potential measurement by a single membrane and the potential shift that occurs because of the use of different membranes.
Keywords
Mullite; Pyrex; Quartz; Open circuit potential; Mechanical properties;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Carotti, A. Laudenbach, H. Wu, M. Straka, and R.O. Scarlat, "Characterization of a Thermodynamic Reference Electrode for Molten LiF-$BeF_2$ (FLiBe): Part II. Materials Analysis", J. Electrochem. Soc., 166(15), H835-H841 (2019).   DOI
2 E. Juzeliunas, A. Cox, and D.J. Fray, "Electro-deoxidation of Thin Silica Layer in Molten Salt-Globular Structures with Effective Light Absorbance (vol. 68, pg. 123, 2012)", Electrochim. Acta, 72, 222-222 (2012).   DOI
3 D.A. Shores and R.C. John, "Study of The AG(S)-$AG_2SO_4+NA_2SO_{4(L)}$ Reference Electrode", J. Appl. Electrochem., 10(2), 275-283 (1980).   DOI
4 G.L. Fredrickson, G.P. Cao, P.K. Tripathy, M.R. Shaltry, S.D. Herrmann, T.S. Yoo, T.Y. Karlsson, D.C. Horvath, R. Gakhar, A.N. Williams, R.O. Hoover, W.C. Phillips, and K.C. Marsden, "Review-Electrochemical Measurements in Molten Salt Systems: A Guide and Perspective", J. Electrochem. Soc., 166, D645-D659 (2019).   DOI
5 S. Yoon, D. Kang, and S. Choi, "Performance of Mullite as Reference Electrode Membrane During the Electrochemical Reduction and Electrorefining Process", Proc. of Korean Radioactive Waste Society Spring 2019, pp. 399-400, Busan (2019).
6 S. Yoon, D. Kang, and S. Choi, "Investigation of Different Reference Electrode Membranes in Molten Salt System during Pyroprocessing", Proc. of 11th International Symposium on Molten Salts Chemistry and Technology, CEMHTI, p. 115, Orleans (2019).
7 K. Yasuda, T. Nohira, Y.H. Ogata, and Y. Ito, "Electrochemical Window of Molten LiCl-KCl-$CaCl_2$ the $Ag^+$/Ag Reference Electrode", Electrochim. Acta, 51(3), 561-565 (2005).   DOI
8 Y. Sakamura, O. Shirai, T. Iwai, and Y. Suzuki, "Distribution behavior of plutonium and americium in LiCl-KCl eutectic/liquid cadmium systems", J. Alloy. Compd., 321, 76-83 (2001).   DOI
9 J. Park, S. Choi, S. Sohn, K.R. Kim, and I.S. Hwang, "Cyclic Voltammetry on Zirconium Redox Reactions in LiCl-KCl-$ZrCl_4$ at 500 degrees C for Electrorefining Contaminated Zircaloy-4 Cladding", J. Electrochem. Soc., 161, H97-H104 (2014).   DOI
10 J. Park, S. Choi, S. Sohn, and I.S. Hwang, "Cyclic Voltammetry on Zr, Sn, Fe, Cr and Co in LiCl-KCl Salts at 500 degrees C for Electrorefining of Irradiated Zircaloy-4 Cladding", J. Electrochem. Soc., 164, D744-D751 (2017).   DOI
11 P. Gao, X.B. Jin, D.H. Wang, X.H. Hu, and G.Z. Chen, "A Quartz Sealed Ag/AgCl Reference Electrode for $CaCl_2$ based Molten Salts", J. Electroanal. Chem., 579(2), 321-328 (2005).   DOI
12 A. Novoselova, V. Smolenski, V.A. Volkovich, A.B. Ivanov, A. Osipenko, and T.R. Griffiths, "Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system", J. Nucl. Mater., 466, 373-378 (2015).   DOI
13 A. Rahmel, M. Schmidt, and M. Schorr, "The Influence of Electrode Potential on The Corrosion of Gas-Turbine Alloys in Sulfate Melts", Oxid. Met., 18(3-4), 195-223 (1982).   DOI
14 H. Wang, N.J. Siambun, L.P. Yu, and G.Z. Chen, "A Robust Alumina Membrane Reference Electrode for High Temperature Molten Salts", J. Electrochem. Soc., 159, H740-H746 (2012).   DOI
15 H. Lee, G.I. Park, K.H. Kang, J.M. Hur, J.G. Kim, D.H. Ahn, Y.Z. Cho, and E.H. Kim, "Pyroprocessing Technology Development at KAERI", Nucl. Eng. Technol., 43(4), 317-328 (2011).   DOI
16 R. Littlewood, "A Reference Electrode for Electrochemical Studies in Fused Alkali Chlorides at High Temperatures", Electrochim. Acta, 3(4), 270-278 (1961).   DOI
17 D. Kang, J. Park, and S. Choi, "Multi-Species Hydrodynamic Electrochemical Modeling with Liquid Metal and Rotating Cylinder Electrodes in Molten Salt", J. Electrochem. Soc., 165(16), E860-E871 (2018).   DOI
18 J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.L. Carls, "Development of pyroprocessing technology", Prog. Nucl. Energy, 31(1), 131-140 (1997).   DOI
19 M.M. Smedskjaer, R.E. Youngman, and J.C. Mauro, "Principles of Pyrex(A (R)) Glass Chemistry: Structure-property Relationships", Appl. Phys. A-Mater. Sci. Process., 116(2), 491-504 (2014).   DOI
20 J. Anggono, "Mullite Ceramics: Its Properties, Structure, and Synthesis", Jurnal Teknik Mesin 7 (2005).
21 W. Pabst, E. Gregorova, T. Uhlirova, and A. Musilova, "Elastic properties of mullite and mullite-containing ceramics-Part 1: theoretical aspects and review of monocrystal data", Ceram. Silik., 57, 265-274 (2013).
22 L. Levien, C.T. Prewitt, and D.J. Weidner, "Structure and Elastic Properties of Quartz At Pressure", Am. Miner., 65(9-10), 920-930 (1980).
23 R.L. Hervig and A. Navrotsky, "Thermochemistry of Sodium Borosilicate Glasses", J. Am. Ceram. Soc., 68(6), 314-319 (1985).   DOI
24 I.M. Abdulagatov, S.N. Emirov, T.A. Tsomaeva, K.A. Gairbekov, S.Y. Askerov, and N.A. Magomedova, "Thermal Conductivity of Fused Quartz and Quartz Ceramic at High Temperatures and High Pressures", J. Phys. Chem. Solids, 61(5), 779-787 (2000).   DOI
25 S. Aramaki and R. Roy, "Revised Phase Diagram for the System $Al_2O_3-SiO_2$", J. Am. Ceram. Soc., 45(5), 229-242 (1962).   DOI
26 M.S. Gaafar and S.Y. Marzouk, "Mechanical and Structural Studies on Sodium Borosilicate Glasses Doped with $Er_2O_3$ Using Ultrasonic Velocity and FTIR Spectroscopy", Physica B, 388(1-2), 294-302 (2007).   DOI
27 H.D.H. Drane and R.J. Strutt, "Elastic Constants of Fused Quartz. Change of Young's Modulus with Temperature", Proc. of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 122(789), 274-282 (1929).
28 T. Tokunaga, L. Tranchant, N. Takama, S. Volz, and B. Kim, "Experimental Study of Heat Transfer in Micro Glass Tubes Mediated by Surface Phonon Polaritons Experimental Study of Heat Transfer in Micro Glass Tubes Mediated by Surface Phonon Polaritons", Journal of Physics Conference Series 395 (2012).
29 K.I. Vatalis, G. Charalambides, and N.P. Benetis, "Market of High Purity Quartz Innovative Applications", International Conference on Applied Economics, Elsevier Science Bv, Amsterdam, pp. 734-742 (2015).
30 W.J. Hamer, M.S. Malmberg, and B. Rubin, "Theoretical electromotive forces for cells containing a single solid or molten chloride electrolyte", J. Electrochem. Soc., 103, 8 (1956).   DOI
31 D.C. Hamby and A.B. Scott, "Thermodynamic Properties of Molten Mixtures of Cobalt Chloride with some Alkali Halides", J. Electrochem. Soc., 117, 319 (1970).   DOI
32 T.-J. Kim, Y.-K. Jeong, J.-G. Kang, Y. Jung, D.-H. Ahn, and H.-S. Lee, "In situ analysis for spontaneous reduction of $Eu^{3+}$ in LiCl pyroprocessing media at 923 K", J. Radioanal. Nucl. Chem., 286, 283-286 (2010).   DOI
33 T.J. Kim, B.O. Jeong, E.H. Lee, D.H. Ahn, Y. Jung, and S.W. Paek, "Understanding of Electrochemical Reduction of $Sm^{3+}$ in a LiCl-KCl Molten Salt Solution at 773 K", Int. J. Electrochem. Sci., 7, 11257-11263 (2012).