• Title/Summary/Keyword: membrane water treatment process

Search Result 476, Processing Time 0.03 seconds

Development of a WWTP influent characterization method for an activated sludge model using an optimization algorithm

  • You, Kwangtae;Kim, Jongrack;Pak, Gijung;Yun, Zuwhan;Kim, Hyunook
    • Membrane and Water Treatment
    • /
    • v.9 no.3
    • /
    • pp.155-162
    • /
    • 2018
  • Process modeling with activated sludge models (ASMs) is useful for the design and operational improvement of biological nutrient removal (BNR) processes. Effective utilization of ASMs requires the influent fraction analysis (IFA) of the wastewater treatment plant (WWTP). However, this is difficult due to the time and cost involved in the design and operation steps, thereby declining the simulation reliability. Harmony Search (HS) algorithm was utilized herein to determine the relationships between composite variables and state variables of the model IWA ASM1. Influent fraction analysis was used in estimating fractions of the state variables of the WWTP influent and its application to 9 wastewater treatment processes in South Korea. The results of influent $S_s$ and $Xs+X_{BH}$, which are the most sensitive variables for design of activated sludge process, are estimated within the error ranges of 8.9-14.2% and 3.8-6.4%, respectively. Utilizing the chemical oxygen demand (COD) fraction analysis for influent wastewater, it was possible to predict the concentrations of treated organic matter and nitrogen in 9 full scale BNR processes with high accuracy. In addition, the results of daily influent fraction analysis (D-IFA) method were superior to those of the constant influent fraction analysis (C-IFA) method.

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process

  • Jung, Minki;Oh, Taeseok;Jung, Kyungbong;Kim, Jaemin;Kim, Sungpyo
    • Membrane and Water Treatment
    • /
    • v.10 no.4
    • /
    • pp.265-275
    • /
    • 2019
  • This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.

Remediation of cesium-contaminated fine soil using electrokinetic method

  • Kim, Ilgook;Kim, June-Hyun;Kim, Sung-Man;Park, Chan Woo;Yang, Hee-Man;Yoon, In-Ho
    • Membrane and Water Treatment
    • /
    • v.11 no.3
    • /
    • pp.189-193
    • /
    • 2020
  • In this study, electrokinetic remediation equipment was used to remove cesium (Cs) from clay soil and waste solution was treated with sorption process. The influence of electrokinetic process on the removal of Cs was evaluated under the condition of applied electric voltage of 15.0-20.0 V. In addition to monitoring the Cs removal, electrical current and temperature of the electrolyte during experiment were investigated. The removal efficiency of Cs from soil by electrokinetic method was more than 90%. After electrokinetic remediation, Cs was selectively separated from soil waste solution using sorbents. Various adsorption agents such as potassium nickel hexacyanoferrate (KNiHCF), Prussian blue, sodium tetraphenylborate (NaTPB), and zeolite were compared and KNiHCF showed the highest Cs removal efficiency. The Cs adsorption on KNiHCF reached equilibrium in 30 min. The maximum adsorption capacity was 120.4 mg/g at 0.1 g/L of adsorbent dosage. These results demonstrated that our proposed process combined electrokinetic remediation of soil and waste solution treatment with metal ferrocyanide can be a promising technique to decontaminate Cs-contaminated fine soil.

Development of the Pilot System for Radioactive Laundry Waste Treatment Using UV Photo-Oxidation Process and Reverse Osmosis Membrane

  • Park, Se-Moon;Park, Jong-Kil;Kim, Jong-Bin;Shin, Sang-Woon;Lee, Myung-Chan
    • Nuclear Engineering and Technology
    • /
    • v.31 no.5
    • /
    • pp.506-511
    • /
    • 1999
  • The pilot system for radioactive liquid laundry waste was developed with treatment capacity, 1ton/hr and set up in the Yong Kwang unit #4. The system is composed of tank module, RO systems and a UV/$H_2O$$_2$photo-oxidation unit. The RO system consists of the BW unit (low-pressure RO for brackish water desalination) and the SW unit (high-pressure RO for seawater desalination). The BW unit possesses 4 RO membranes and it can reduce the feed water volume down to 1/10. This concentrated feed water can be reduced again up to 1/10 in its volume in the SW unit composed of 4 RO membranes. The UV/$H_2O$$_2$ photo-oxidation process unit was used for the detergent degradation. The operation of the pilot system was carried out and verified in its capability through the continuous operation and concentration operation using the actual liquid waste from the power plant. The design criteria and data for industrialization were yielded. The efficiency of the UV/$H_2O$$_2$ photo-oxidation process and the optimum operational procedure were evaluated. The decontamination factors for radioactive cobalt and cesium were measured. This on-site test showed the experimental result in the DF$\geq$300 and volume reduction factor$\geq$100.

  • PDF

Adsorption process efficiency of activated carbon from date pits in removing pollutants from dye wastewater

  • A. Ahsan;I.K. Erabee;F.B. Nazrul;M. Imteaz;M.M. El-Sergany;S. Shams;Md. Shafiquzzaman
    • Membrane and Water Treatment
    • /
    • v.14 no.4
    • /
    • pp.163-173
    • /
    • 2023
  • The presence of high amounts of organic and inorganic contaminants in textile wastewater is a major environmental concern. Therefore, the treatment of textile wastewater is an urgent issue to save the aquatic environment. The disposal of large quantities of untreated textile wastewater into inland water bodies can cause serious water pollution. In this study, synthetic dye wastewater samples were prepared using orange dye in the laboratory. The synthetic samples were then treated by a batch adsorption process using the prepared activated carbon (AC) from date pits. The wastewater parameters studied were the pH, total dissolved solids (TDS), total suspended solids (TSS), electrical conductivity (EC) and salinity. The activated adsorption process showed that the maximum removal efficiencies of electric conductivity (EC), salinity, TDS and TSS were 65%, 92%, 89% and 90%, respectively. The removal efficiencies were proportional to the increase in contact time (30-120 min) and AC adsorbent dose (1, 3 and 5 g/L). The adsorption profile indicates that 5 g/L of adsorbent delivers better results for TDS, EC, TSS and salinity at contact time of 120 min. The adsorption characteristics are better suited to the pseudo-second-order kinetic model than to the pseudo-first-order kinetic model. The Langmuir and Freundlich isotherms were well suited for describing the adsorption or contact behavior of EC and TSS within the studied system.

Surface Characterization of NF membranes for Hardness Removal and Its Implications to Fouling Mechanisms (경도제거용 나노여과막의 표면 특성 분석 및 막오염기작 연구)

  • Ham, Sangwoo;Kim, Youngjin;Kim, Chunghwan;Shon, Hokyong;Hong, Seungkwan
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.559-567
    • /
    • 2013
  • In recent years, NF (nanofiltration) membrane has been receiving great attention for hardness removal and has begun to replace traditional lime soda ash softening process, particularly in Florida, USA, mainly due to less sludge production and easy operation. This study aimed to provide detailed surface characteristics of various commercial NF membranes by performing sophisticated surface analysis, which would help more fundamentally understand the performance of NF membranes. More specifically, a total of 7 NF membranes from top NF/RO manufacturers in the world were examined for basic performance tests, surface analysis, and fouling potential assessment. The results demonstrated that NF membranes are classified into two groups in terms of surface zeta potential; they are highly negatively charged ones, and neutral and/or less negatively charged ones. Their hydrophobicities, measured by contact angle, varied from hydrophilic to slightly hydrophobic ones. The AFM measurements showed various surface roughness, ranging from 23 nm (smooth) to 162 nm (rough) of average peak height. Lab-scale fouling experiments were performed using feedwater obtained from conventional water treatment plants in the province of Korea, and their results attempted to correlate to surface characteristics of NF membranes. However, unlike typical RO membranes, no clear correlation was found in this study, indicating that fouling mechanisms of NF membrane may be different from those of typical RO membranes, and both cake deposition and pore blocking mechanisms should be considered simultaneously.

Municipal wastewater reclamation for non-potable use using hollow- fiber membranes

  • Waghmare, Sujata;Masid, Smita;Rao, A. Prakash;Roy, Paramita;Reddy, A.V.R.;Nandy, T.;Rao, N.N.
    • Membrane and Water Treatment
    • /
    • v.1 no.3
    • /
    • pp.207-214
    • /
    • 2010
  • Approximately 80% of water used in urban areas reappears as municipal wastewater (MWW). Reclamation of MWW is an attractive proposition under the present scenario of water stressed cities in India. In this paper, we attempted to reclaim MWW using lab-scale hollow- fiber (HF) membrane modules for possible reuse in non-potable applications. Experiments were conducted to evaluate the efficiency of virgin HF ($M_1$) and modified HF ($M_2$) modules. The $M_2$ module consists of HF modified with a skin layer formed through interfacial polymerization of m-phenylenediamine with trimesoyl chloride (MPD-TMC). The molecular weight cut-off (MWCO) of $M_1$ was 44000 g/mol and that of $M_2$ 10000 -14000 g/mol on the basis of rejection of polyethylene glycol. The combination of $M_1$ and $M_2$ modules was able to reduce concentrations of most of the pollutants in sewage and improved the treated water quality to the acceptable limits for non potable reuse applications. It is found that about 98-99% of the initial flux is recovered by the backwashing process, which was approximately two times in a month when operated continuously.

Degradation of Phenol by "TiO2 Ceramic Membrane+UV+H2O2" AOP ("TiO2 촉매막+UV+H2O2" 고도산화법(AOP)을 이용한 페놀 분해)

  • Choung, Youn Kyoo;Kim, Jin Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.645-654
    • /
    • 1994
  • Photocatalytic oxidation conditions of reactant recirculation flow rate 275 mL/min, aeration rate 2 LPM and $UV+TiO_2+H_2O_2$(500 mg/L) proved to be appropriate for water including organic materials treatment. With increasing turbidity and suspended solids concentration, at turbidity 10 NTU-suspended solids concentration 29 mg/L the phenol degradation efficiency increased, which in turn decreased at turbidity 50 NTU-suspended solids concentration 170 mg/L, however no significant differences were observed, demonstrating similar results with those obtained at zero turbidity and suspended solids concentration. The degradation efficiency of phenol decreased with increasing influent phenol concentrations. The $UV+TiO_2+H_2O_2$ photocatalytic advanced oxidation process conducted is considered to be possibly applied to the drinking water treatment, and the post-treatment process of biological wastewater treatment.

  • PDF

A Study on the Treatment of Landfill Leachate using Membrane and Evaporator (Lab Test) (분리막과 증발기를 이용한 매립지 침출수 처리에 관한 연구 (Lab test))

  • Kang, Shin-Gyung;Park, Yung-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2125-2134
    • /
    • 2000
  • This research was to develope the economical treatment processes of the landfill leachate to meet the legal discharge standards. To achieve this purpose, experiments were conducted in laboratory to choose the optimum process and to obtain the design factors before a pi!ot-scale test. The concept of the process developing in this research was using the reverse osmosis system. The submerged membrane bio-reactor was used to achieve pre-treatment of reverse osmosis system and the concentrate was treated by evaporator with land fill gas as a fuel. The results of the research showed that SS, $BOD_5$, $COD_{cr}$, $NH_4{^+}-N$ and T-N were removed 99.0%, 43.0%, 12.9%, 48.5% and 18.7% respectively in the submerged membrane bio-reactor. The reverse osmosis system could remove $BOD_5$, $COD_{cr}$, $NH_4{^+}-N$ and T-N as an efficiency of97.5%, 97.6%, 79.7% and 85.4% respectively. The evaporator could remove $COD_{cr}$, $NH_4{^+}-N$ and T-N as an efficiency of 90.5%, 50.6% and 63.3% respectively. However the condensed water of the evaporator was not satisfied the legal standard and should be treated in reverse osmosis with the pre-treated leachate.

  • PDF

Effect of $N_2$-back-flushing in Multi Channels Ceramic Microfiltration System for Paper Wastewater Treatment (제지폐수 처리를 위한 다채널 세라믹 정밀여과 시스템에서 질소 역세척 효과)

  • Park Jin-Yong;Choi Sung-Jin;Park Bo-Reum
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.31-38
    • /
    • 2006
  • The ceramic microfiltration system with periodic $N_2$-back-flushing was operated for treating paper wastewater discharged from a company making toilet papers by recycling milk or juice cartons. Two kinds of alumina membranes with 7 channels used here for recycling paper wastewater. The optimal filtration time interval for HC04 membrane with $0.4{\mu}m$ pore size was lower value of 4 min than 16 min for HC10 with $1.0{\mu}m$ pore size at fixed back-flushing time 40 sec, trans-membrane pressure $1.0kg_f/cm^2$ and back-flushing pressure $5.0kg_f/cm^2$. From the results of TMP effect at fixed filtration time interval and back-flushing time, the lower TMP was better on membrane fouling because high TMP could make easily membrane cake and fouling inside membrane structure. However, we could acquire the highest volume of total permeate at the highest TMP for the reason that TMP was driving force in our filtration system to treat paper wastewater. Then the permeate water of low turbidity was acquired in our microfiltration system using multi channels ceramic membranes, and the treated water could be reused in paper process.