Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.4.265

Study on the optimization of partial nitritation using air-lift granulation reactor for two stage partial nitritation/Anammox process  

Jung, Minki (Department of Environmental System Engineering, Korea University)
Oh, Taeseok (BKT Co. Ltd.)
Jung, Kyungbong (BKT Co. Ltd.)
Kim, Jaemin (Department of Environmental System Engineering, Korea University)
Kim, Sungpyo (Department of Environmental System Engineering, Korea University)
Publication Information
Membrane and Water Treatment / v.10, no.4, 2019 , pp. 265-275 More about this Journal
Abstract
This study aimed to develop a compact partial nitritation step by forming granules with high Ammonia-Oxidizing Bacteria (AOB) fraction using the Air-lift Granulation Reactor (AGR) and to evaluate the feasibility of treating reject water with high ammonium content by combination with the Anammox process. The partial nitritation using AGR was achieved at high nitrogen loading rate ($2.25{\pm}0.05kg\;N\;m-3\;d^{-1}$). The important factors for successful partial nitritation at high nitrogen loading rate were relatively high pH (7.5~8), resulting in high free ammonia concentration ($1{\sim}10mg\;FA\;L^{-1}$) and highly enriched AOB granules accounting for 25% of the total bacteria population in the reactor. After the establishment of stable partial nitritation, an effluent $NO_2{^-}-N/NH_4{^+}-N$ ratio of $1.2{\pm}0.05$ was achieved, which was then fed into the Anammox reactor. A high nitrogen removal rate of $2.0k\; N\;m^{-3}\;d^{-1}$ was successfully achieved in the Anammox reactor. By controlling the nitrogen loading rate at the partial nitritation using AGR, the influent concentration ratio ($NO_2{^-}-N/NH_4{^+}-N=1.2{\pm}0.05$) required for the Anammox was controlled, thereby minimizing the inhibition effect of residual nitrite.
Keywords
reject water; AOB granules; partial nitritation; nitrogen removal; anammox;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 APHA, AWWA and WEF (2005), Standard Methods for the Examination of Water and Wastewaster (21st Edition), American Public Health Association, American Water Works Association, Water Environment Federation, Washington DC, USA.
2 Anthonisen, A.C., Loehr, R.C., Parkasam, T.B.S. and Srinath, E.G. (1976), "Inhibition of nitrification by ammonia and nitrous acid", Wat. Pollut. control Fed, 48(5), 835-852. https://www.jstor.org/stable/25038971.
3 APHA (2005), Standard Methods for the Examination of Water and Wastewater, (21st Ed.), American Public Health Association/American Water Works Association/Water Environment Federation, Washington, DC, USA.
4 Aslan, S., Miller, L. and Dahab, M. (2009), "Ammonium oxidation via nitrite accumulation under limited oxygen concentration in sequencing batch reactors", Bioresource Technol., 100(2), 659-664. https://doi.org/10.1016/j.biortech.2008.07.033.   DOI
5 Kartal, B., van Niftrik, L., Keltjens, J.T., Huub, J.M., den Camp, O. and Jetten, M.S.M. (2012), "Anammox-Growth physiology, cell biology and metabolism", Adv. Microbial Physiology, 60, 211-262. https://doi.org/10.1016/B978-0-12-398264-3.00003-6.   DOI
6 Chamchoi, N., Nitisoravut, S. and Schmidt, J.E. (2008), "Inactivation of ANAMMOX communities under concurrent operation of anaerobic ammonium oxidation (ANAMMOX) and denitrification", Bioresource Technol., 99(9), 3331-3336. https://doi.org/10.1016/j.biortech.2007.08.029.   DOI
7 Fux, C., Boehler, M., Huber, P., Brunner, I. and Siegrist, H. (2002), "Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant", J. Biotechnol., 99(3), 295-306. https://doi.org/10.1016/S0168-1656(02)00220-1.   DOI
8 Cho, S., Fujii, N., Lee, T. and Okabe, S. (2011), "Development of a simultaneous partial nitrification and anaerobic ammonia oxidation process in a single reactor", Bioresour. Technol., 102(2), 652-659. https://doi.org/10.1016/j.biortech.2010.08.031.   DOI
9 De Kreuk, M.K. and De Bruin, L.M.M (2004), Aerobic Granule Reactor Technology, Stowa-Foundation for Applied Water Research, Amersfoort, The Netherlands.
10 Bettazzi, E., Caffaz, S., Vannini, C. and Lubello, C. (2010), "Nitrite inhibition and intermediates effects on Anammox bacteria: A batch-scale experimental study", Process Biochemistry, 45(4), 573-580. https://doi.org/10.1016/j.procbio.2009.12.003.   DOI
11 Bowden, G., Tsuchihashi, R. and Stensel, H.D. (2015), Technologies for Sidestream Nitrogen Removal, Water Environment Research Foundation(WERF), Virginia, USA.
12 Hellinga, C., Schellen, A.A.J.C., Mulder, J.W., van Loosdrecht, M.C.M. and Heijnen, J.J. (1998), "The SHARON process: An innovative method for nitrogen removal from ammonium-rich waste water", Water Sci. Technol., 37(9), 135-142. https://doi.org/10.1016/S0273-1223(98)00281-9.   DOI
13 Jetten, M.S.M., Wagner, M., Fuerst, J., Loosdrecht, M.V., Kuenen, J.G. and Strous, M. (2001), "Microbiology and application of the anaerobic ammonium oxidation (Anammox) process", Curr. Opin. Biotechnol., 12(3), 283-288. https://doi.org/10.1016/S0958-1669(00)00211-1.   DOI
14 Lackner, S., Gilber, E.M., Vlaeminck, S.E., Joss, A., Horn, H. and van Loosdrecht, M.C.M. (2014), "Full-scale partial nitritation/anammox experiences-An application survey", Water Res., 55, 292-303. https://doi.org/10.1016/j.watres.2014.02.032.   DOI
15 Okabe, S., Oshiki, M., Takahashi, Y. and Satoh, H. (2011), "Development of long-term stable partial nitrification and subsequent anammox process", Bioresource Technol., 102(13), 6801-6807. https://doi.org/10.1016/j.biortech.2011.04.011.   DOI
16 Satoh, H., Okabe, S., Yamaguchi, Y. and Watanabe, Y. (2003), "Evaluation of the impact of bioaugmentation and biostimulation by in situ hybridization and microelectrode", Water Research, 37(9), 2206-2216. https://doi.org/10.1016/j.biortech.2011.04.011.   DOI
17 Sliekers, O., Derwort, N., Campos-Gomez, J.L., Strous, M., Kuenen, J.G. and Jetten, M.S.M. (2002), "Completely autotrophic nitrogen removal over nitrite in a single reactor", Water Res., 36, 2475-2482. https://doi.org/10.1016/S0043-1354(01)00476-6.   DOI
18 Third, K.A., Sliekers, A.O., Kuenen, J.G. and Jetten, M.S.M. (2001), "The CANON system (completely autotrophic nitrogenremoval over nitrite) under ammonium limitation: interaction and competition between three groups of bacteria", Syst. Appl. Microbiol., 24(4), 588-596. https://doi.org/10.1078/0723-2020-00077.   DOI
19 van Dongen, U.G.J.M., Jetten, M.S.M. and van Loosdrecht, M.C.M. (2001), "The SHARON-anammox process for treatment of ammonium rich wastewater", Water Sci. Technol., 44, 153-160. https://doi.org/10.2166/wst.2001.0037.
20 Yamamoto, T., Takaki, K., Koyama, T. and Furukawa, K. (2008), "Long-term stability of partial nitritation of swine wastewater digester liquor and its subsequent treatment by anammox", Bioresource Technol., 99(14), 6419-6425. https://doi.org/10.1016/j.biortech.2007.11.052.   DOI
21 Ruscalleda, M., Lopez, H., Ganigue, R., Puig, S., Balaguer, M.D. and Colprim, J. (2008), "Heterotrophic denitrification on granular anammox SBR treating urban landfill leachate", Water Sci. Technol., 58(9), 1749-1755. https://doi.org/10.2166/wst.2008.544.   DOI
22 Lai, E., Senkpiel, S., Solley, D. and Keller, J. (2004), "Nitrogen removal of high strength wastewater via nitritation/denitritation using a sequencing batch reactor", Water Sci. Technol., 50(10), 27-33. https://doi.org/10.2166/wst.2004.0601.   DOI
23 Yang, S.F., Tay, J.H. and Liu, Y. (2004), "Inhibition of free ammonia to the formation of aerobic granules", Biochem. Eng. J., 17(1), 41-48. https://doi.org/10.1016/S1369-703X(03)00122-0.   DOI
24 Liang, Z. and Liu, J. (2008), "Landfill leachate treatment with a novel process: anaerobic ammonium oxidation (Anammox) combined with soil infiltration system", J. Hazard. Materials, 151(1), 202-212. https://doi.org/10.1016/j.jhazmat.2007.05.068.   DOI
25 Soliman, M. and Eldyasti, A. (2016), "Development of partial nitrification as a first step of nitrite shunt process in a Sequential Batch Reactor(SBR) using Ammonium Oxidizing Bacteria(AOB) controlled by mixing regime", Bioresource Technol., 211, 85-95. https://doi.org/10.1016/j.biortech.2016.09.023.   DOI
26 Ali, M. and Okabe, S. (2015), "Anammox-based technologies for nitrogen removal: Advances in process start-up and remaining issues", Chemosphere, 141, 144-153. https://doi.org/10.1016/j.chemosphere.2015.06.094.   DOI
27 Ibrahim, M., Yusof, M., Z., Yusoff, M and Hassan, M.A. (2016), "Enrichment of anaerobic ammonium oxidation (anammox) bacteria for short start-up of the anammox process: A review", Desalination Water Treat., 57, 13958-13978. https://doi.org/10.1080/19443994.2015.1063009.   DOI
28 Okabe, S., Oozawa, Y., Hirata, K. and Watanabe, Y. (1996), "Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios", Water Res., 30, 1563-1572. https://doi.org/10.1016/0043-1354(95)00321-5.   DOI
29 Lorhemen, O.T., Hamza, R.A. and Tay, J.H. (2017), "Utilization of aerobic granulation to mitigate membrane fouling in MBRs", Membr. Water Treat., 8(5), 395-409. http://dx.doi.org/10.12989/mwt.2017.8.5.395.   DOI
30 Jin, R.C., Yang, G.F., Yu, J.J. and Zheng, P. (2012), "The inhibition of the Anammox process: A review", Chemical Eng. J., 197, 67-79. https://doi.org/10.1016/j.cej.2012.05.014.   DOI