• Title/Summary/Keyword: membrane thickness

Search Result 592, Processing Time 0.024 seconds

Effect of Thickness Change in Corrugations on the Stiffness and Vibration Characteristics of a Thermoformed Diaphragm (열성형 진동판의 미세주름 두께변화가 구조강성 및 진동특성에 미치는 영향 분석)

  • Kim, K.M.;Park, K.
    • Transactions of Materials Processing
    • /
    • v.23 no.1
    • /
    • pp.10-15
    • /
    • 2014
  • Recently, micro-speakers have attracted much attention due to their increasing demand in mobile devices. Micro-speakers use polymer diaphragms, which are manufactured from thin polymer film by the thermoforming process. The diaphragm is generally designed to be a circular membrane with a cross section consisting of a double dome structure, and a number of corrugations are located in the outer region to produce better sound quality. In the current study, a finite element (FE) analysis is performed for thermoforming, and the resulting thickness reduction in the corrugation regions is estimated. The estimated thickness distribution is used in further structural and modal FE analyses, from which the effects of local thickness reduction on the stiffness and vibration characteristics are determined.

Analysis of Superplastic Forming Process Design Using a Combined Stretch/Blow Process for Uniform Thickness Distribution (균일한 두께분포를 위한 신장/블로 공정을 이용한 초소성 성형 공정설계 해석)

  • Hong, S.S.;Lee, J.S.;Kin, Y.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.1
    • /
    • pp.129-137
    • /
    • 1994
  • A rigid-viscoplastic finite element method has been used for modeling superplastic stretch/blow process design to improve thickness distribution. Punch velocity-time relationship of the stretch forming and pressure-time cycle of the blow forming for a given strain rate are calculated. A superplastic material is assumed to be isotropic and a plane-strain line element based on membrane approximation is employed for the formulation. The effects of the width, corner radius and height of the punch during stretch forming are examined for the final thickness distribution, and the process design to improve thickness distribution can be established.

  • PDF

Development of a Peristaltic Micropump with Lightweight Piezo-Composite Actuator Membrane Valves

  • Pham, My;Goo, Nam-Seo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.69-77
    • /
    • 2011
  • A peristaltic micropump with lightweight piezo-composite actuator (LIPCA) membrane valves is presented. The micropump contained three cylinder chambers that were connected by microchannels and two active membrane valves. A circular miniature LIPCA was developed and manufactured to be used as actuating diaphragms. The LIPCA diaphragm acted as an active membrane valve that alternate between open and closed positions at the inlet and outlet in order to produce high pumping pressure. In this LIPCA, a lead zirconium titanate ceramic with a thickness of 0.1 mm was used as an active layer. The results confirmed that the actuator produced a large out-of-plane deflection. During the design process, a coupled field analysis was conducted in order to predict the actuating behavior of the LIPCA diaphragm; the behavior of the actuator was investigated from both a theoretical and experimental perspective. The active membrane valve concept was introduced as a means for increasing pumping pressure, and microelectromechanical system techniques were used to fabricate the peristaltic micropump. The pumping performance was analyzed experimentally in terms of the flow rate, pumping pressure and power consumption.

Membrane Inlet-based Portable Time-of-flight Mass Spectrometer for Analysis of Air Samples

  • Kim, Tae-Kyu;Jung, Kyung-Hoon;Yoo, Seung-Kyo;Jung, Kwang-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.2
    • /
    • pp.303-308
    • /
    • 2005
  • A miniaturized time-of-flight mass spectrometer with an electron impact ionization source and sheet membrane introduction has been developed. The advantages and features of this mass spectrometer include high sensitivity, simple structure, low cost, compact volume with field portability, and ease of operation. A mass resolution of 400 at m/z 78 has been obtained with a 25 cm flight path length. Under optimized conditions, the detection limits for the volatile organic compounds (VOCs) studied were 0.2-10 ppm by volume with linear dynamic ranges greater than three orders of magnitude. The response times for various VOCs using a silicone membrane of 127 $\mu$m thickness were in the range 4.5-20 s, which provides a sample analysis time of less than 1 minute. These results indicate that the membrane introduction/time-of-flight mass spectrometer will be useful for a wide range of field applications, particularly for environmental monitoring.

Tensile Test and Creep Tests of ETFE Membrane (ETFE 막재에 대한 인장실험과 크리프 실험)

  • Kim, Jae-Yeol;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.3
    • /
    • pp.57-64
    • /
    • 2010
  • Uniaxial tensile tests of ETFE membrane are performed in this paper. Three kinds ETFE membrane with different thickness are used in the tests. The tensile strength, the tensile strain at break and the stress-strain curve are obtained from the tests. Futhermore, The cycle loading test of ETFE membrane is carried out through using different values of cycle stress. The residual strain, the relaxation of stress and the change of the elastic modulus of foil are investigated. In the creep test, three kinds of temperature (25, 40 and 60 $^{\circ}C$)and three kinds of stress(3,6and9 MPa) are set respectively and the creep time lasts 24 hours.

  • PDF

Improved Responsivity of an a-Si-based Micro-bolometer Focal Plane Array with a SiNx Membrane Layer

  • Joontaek, Jung;Minsik, Kim;Chae-Hwan, Kim;Tae Hyun, Kim;Sang Hyun, Park;Kwanghee, Kim;Hui Jae, Cho;Youngju, Kim;Hee Yeoun, Kim;Jae Sub, Oh
    • Journal of Sensor Science and Technology
    • /
    • v.31 no.6
    • /
    • pp.366-370
    • /
    • 2022
  • A 12 ㎛ pixel-sized 360 × 240 microbolometer focal plane array (MBFPA) was fabricated using a complementary metaloxide-semiconductor (CMOS)-compatible process. To release the MBFPA membrane, an amorphous carbon layer (ACL) processed at a low temperature (<400 ℃) was deposited as a sacrificial layer. The thermal time constant of the MBFPA was improved by using serpentine legs and controlling the thickness of the SiNx layers at 110, 130, and 150 nm on the membrane, with response times of 6.13, 6.28, and 7.48 msec, respectively. Boron-doped amorphous Si (a-Si), which exhibits a high-temperature coefficient of resistance (TCR) and CMOS compatibility, was deposited on top of the membrane as an IR absorption layer to provide heat energy transformation. The structural stability of the thin SiNx membrane and serpentine legs was observed using field-emission scanning electron microscopy (FE-SEM). The fabrication yield was evaluated by measuring the resistance of a representative pixel in the array, which was in the range of 0.8-1.2 Mohm (as designed). The yields for SiNx thicknesses of SiNx at 110, 130, and 150 nm were 75, 86, and 86%, respectively.

Assessment of dehydrothermally cross-linked collagen membrane for guided bone regeneration around peri-implant dehiscence defects: a randomized single-blinded clinical trial

  • Lee, Jae-Hong;Lee, Jung-Seok;Baek, Won-Sun;Lim, Hyun-Chang;Cha, Jae-Kook;Choi, Seong-Ho;Jung, Ui-Won
    • Journal of Periodontal and Implant Science
    • /
    • v.45 no.6
    • /
    • pp.229-237
    • /
    • 2015
  • Purpose: The aim of this study was to determine the clinical feasibility of using dehydrothermally cross-linked collagen membrane (DCM) for bone regeneration around peri-implant dehiscence defects, and compare it with non-cross-linked native collagen membrane (NCM). Methods: Dehiscence defects were investigated in twenty-eight patients. Defect width and height were measured by periodontal probe immediately following implant placement (baseline) and 16 weeks afterward. Membrane manipulation and maintenance were clinically assessed by means of the visual analogue scale score at baseline. Changes in horizontal thickness at 1 mm, 2 mm, and 3 mm below the top of the implant platform and the average bone density were assessed by cone-beam computed tomography at 16 weeks. Degradation of membrane was histologically observed in the soft tissue around the implant prior to re-entry surgery. Results: Five defect sites (two sites in the NCM group and three sites in the DCM group) showed soft-tissue dehiscence defects and membrane exposure during the early healing period, but there were no symptoms or signs of severe complications during the experimental postoperative period. Significant clinical and radiological improvements were found in all parameters with both types of collagen membrane. Partially resorbed membrane leaflets were only observed histologically in the DCM group. Conclusions: These findings suggest that, compared with NCM, DCM has a similar clinical expediency and possesses more stable maintenance properties. Therefore, it could be used effectively in guided bone regeneration around dehiscence-type defects.

Ultrastructural Studies on the Cabbage Butterfly, Pieris rapae L. I . Fine Structure on the Dorsal Vessel (배추흰나비 (Pieris rapae L.)의 미세구조(微細構造)에 관한 연구(硏究) I . 배관(背管)의 미세구조(微細構造))

  • Kim, C.W.;Kim, W.K.;Lee, K.O.
    • Applied Microscopy
    • /
    • v.15 no.1
    • /
    • pp.71-85
    • /
    • 1985
  • The ultrastructure on the dorsal vessel of 5-day-old cabbage butterfly, Pieris rapae L., was carried out using the transmission and scanning electron microscope. The results are as follows. 1) The aorta. The aorta is simple tubular type and consists of the inner and outer membrane of the myocardium and thick myocardium is located between them. However the inner membrane with $0.26{\mu}m$ thickness and outer membrane with $0.08{\mu}m$ are composed of fibrous materials, the former is composed of low and high densed fibrous materials and the latter appears homogeneous layer. The myocardium consists of typical striated muscles. The sarcomere with $1.6{\mu}m$ length and in cross section, each thick filaments are surrounded by $7{\sim}8$ thin filaments. The intercalated disc is joining the end of the two muscle cells, desmosomes and septate junctions are appeared between the neighboring muscle cells. 2) The heart. The heart composing of myocardium enclosed by its inner and outer membrane as the aorta has a series of well formed segmental chamber. The arrangement of myofilaments, cell adhensions and membrane elements are observed as same as at the aorta. The inner membrane of the heart is deeply invaginated into the myocardium than the outer membrane and a lot of well developed mitochondria with rod shape are aggregated in the folds. The longitudinally and transversely oriented tubule system formed by invagnation of the sarcolemma into the muscle bundle is built up dyad with the sarcoplasmic reticulum as the aorta. The slit is formed by deeply invagination of the inner membrane of myocadium toward the muscle layer and then the inner and outer membrane of myocardium are fused. Therefore, the ostium is formed between the myocardium and situated at the lateral side of the myocardium.

  • PDF

Preparation of Inorganic Ultrafiltration Membrane by Anodic Oxidation in Oxalic Acid (수산전해액하에서 양극산화에 의한 무기 UF막의 제조)

  • Lee, Chang-Woo;Hong, Young-Ho;Chang, Yoon-Ho;Hahm, Yeong-Min
    • Applied Chemistry for Engineering
    • /
    • v.9 no.4
    • /
    • pp.536-541
    • /
    • 1998
  • The porous size alumina membrane was prepared by anodic oxidation with current method in an aqueous solution of oxalic acid. The aluminum metal plate was pretreated with thermal oxidation, chemical polishing and electropolishing before anodic oxidation. Membrane thickness and pore size distribution were investigated with several anodizing conditions; reaction temperature, cumulative charge, electrolyte concentration and current density. The porous alumina membrane obtained was $55{\sim}75{\mu}m$ thick with straight micropore of 45~100nm. Also, the porous alumina membrane has an uniform pore diameter and pore distribution. It was inorganic ultrafiltration membrane as a kind of the ceramic membrane.

  • PDF

Effective study of operating parameters on the membrane distillation processes using various materials for seawater desalination

  • Sandid, Abdelfatah Marni;Neharia, Driss;Nehari, Taieb
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.235-243
    • /
    • 2022
  • The paper presents the effect of operating temperatures and flow rates on the distillate flux that can be obtained from a hydrophobic membrane having the characteristics: pore size of 0.15 ㎛; thickness of 130 ㎛; and 85% porosity. That membrane in the present investigation could be the direct contact (DCMD) or the air-gap membrane distillation (AGMD). To model numerically the membrane distillation processes, the two-dimensional computational fluid dynamic (CFD) is used for the DCMD and AGMD cases here. In this work, DCMD and AGMD models have been validated with the experimental data using different flows (Parallel and Counter-current flows) in non-steady-state situations. A good agreement is obtained between the present results and those of the experimental data in the literature. The new approach in the present numerical modeling has allowed examining effects of the nature of materials (Polyvinylidene fluoride (PVDF) polymers, copolymers, and blends) used on thermal properties. Moreover, the effect of the area surface of the membrane (0.021 to 3.15 ㎡) is investigated to explore both the laminar and the turbulent flow regimes. The obtained results found that copolymer P(VDF-TrFE) (80/20) is more effective than the other materials of membrane distillation (MD). The mass flux and thermal efficiency reach 193.5 (g/㎡s), and 83.29 % using turbulent flow and an effective area of 3.1 ㎡, respectively. The increase of feed inlet temperatures and its flow rate, with the reduction of cold temperatures and its flow rate are very effective for increasing distillate water flow in MD applications.