• 제목/요약/키워드: membrane surface modification

검색결과 130건 처리시간 0.023초

표면개질 실리카막을 이용한 $CO_2$선택투과분리 ($CO_2$ Separation Using Surface Modified Silica Membrane)

  • 김성수;최현교;박홍채;김태옥;서봉국
    • 한국환경과학회지
    • /
    • 제9권4호
    • /
    • pp.311-318
    • /
    • 2000
  • To improve $CO_2$pemselectivity, a modified silica membrane was prepared by chemical vapor deposition with tetraethoxysilane(TEOS)-ethanol-water, and TEOS-ethanol-water-HCI solution at 300-$600^{\circ}C$. The silica was effectively deposited in the mesopores of a ${\gamma}$-alumina film coated on a porous $\alpha$-alumina tube by evacuating the reactants through the porous wall. In this membrane, $CO_2$interacts, to some extent, with the pore wall, and $CO_2$/$N_2$selectivity then exceeds the value of the Knudsen diffusion mechanism, while the membrane derived from TEOS alone has no $CO_2$selectivity. The silica membrane prepared from TEOS-ethanol-water-HCI solution showed that $CO_2$permeance was $2.5$\times$10^{-7}mol/s^{-1}.m^{-2}.Pa^{-1} at 30{\circ}C$ and $CO_2$/$N_2$selectivity was approximately 3. The $CO_2$permeance and selectivity was improved by enlarging the surface diffusion with modification of chemical affinity of the silica pores.

  • PDF

수소 분리용 팔라듐계 분리막의 세라믹 코팅 영향 (Ceramic barrier coated Pd hydrogen membrane on a porous nickel support)

  • 이춘부;이성욱;박진우;김광호;황경란;박종수;김성현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.114.1-114.1
    • /
    • 2010
  • A highly performed Pd-based hydrogen membrane has prepared successfully on a modified porous nickel support. The porous nickel support modified by impregnation method of $Al(NO_3)_3{\cdot}9H_2O$ (Aldrich Co.) over the nickel powder showed a strong resistance to hydrogen embrittlement and thermal stability. Plasma surface modification treatment was introduced as a pre-treatment process instead of conventional HCl wet activation. Ceramic barrier was coated on the external surface of the prepared nickel supports to prevent intermetallic diffusion and to enhance the affinity between the support and membrane. Palladium and copper were deposited at thicknesses of $4\mu}m$ and $0.5{\mu}m$, respectively, on a barrier-coated support by DC sputtering process. The permeation measurement was performed in pure hydrogen at $400^{\circ}C$. The single gas permeation of our membrane was two times higher than that of the previous membrane which do not have ceramic barrier.

  • PDF

DLC 코팅에 의한 PVdF-HFP 막의 표면변화 및 접촉각 연구 (Study of surface modification and contact angle by electrospun PVdF-HFP membrane with DLC coating)

  • 이태동;조현;윤수종;김태규
    • 한국결정성장학회지
    • /
    • 제24권1호
    • /
    • pp.33-40
    • /
    • 2014
  • 전기방사법(Electrospinning technique)을 이용하여 PVdF-HFP(Poly vinylidene fluoride-co-hexafluoropropylene) 멤브레인을 제조하고, 그 멤브레인 표면위에 DLC(Diamond-like carbon) 코팅공정을 적용하여 멤브레인의 표면변화 및 접촉각 변화를 조사하였다. Ar 플라즈마 처리시간 및 처리조건에 따라 PVdF-HFP 멤브레인 파이버 표면이 주름(wrinkles)형태로 변화 하였다. 이러한 Ar 플라즈마 처리가 된 PVdF-HFP 멤브레인은 초친수성(super-hydrophilic) 특성으로 변했지만, 초친수성 PVdF-HFP 멤브레인에 DLC 코팅공정을 적용하면 반대로 초소수성(super-hydrophobic) 특성으로 변화되었다. 이러한 특성을 가진 표면을 접촉각 측정과 XPS, FE-SEM 측정으로 분석하였다. 따라서 화학적 조성과 표면 형상에 의해 접촉각 특성을 가지는 것으로 확인하였다.

이마피판에서 피판 노출면의 인조 콜라겐막을 이용한 관리 (Management for Raw Surface of Forehead Flap Using Artificial Collagen Membrane)

  • 김다앎;오상하;서영준;양호직;정승원
    • 대한두개안면성형외과학회지
    • /
    • 제13권1호
    • /
    • pp.46-49
    • /
    • 2012
  • Purpose: The forehead flap is the workhorse in nasal reconstruction, which provides a similar skin color, texture, structure, and reliability. There are some disadvantages, including donor site morbidities, 2- or 3-stage operations, and postoperative management after initial flap transfer. Furthermore, there has been little attention to the exposed raw surface wound, after the first stage of an operation. This article describes the authors' modification to overcome this problem, using artificial collagen membrane. Methods: An Artificial collagen membrane is composed of an outer silicone membrane and an inner collagen layer. After a forehead flap elevation, the expected raw surface was covered by an artificial collagen membrane with 5-0 nylon suture. A simple dressing, which had been applied to the site, was changed every 2 or 3 days in an outpatient unit. At 3 weeks postprocedure, a second stage operation was performed. Results: With biosynthetic protection of the raw surface, there were no wound problems, such as infection or flap loss. Thus, the patient was satisfied due to an effortless management of the wound and a reduction in pain. Conclusion: The application of an artificial collagen membrane to the raw under-surface of the flap could be a comfortable and a protective choice for this procedure.

Fabrication and characterization of polysulfone ultrafiltration membrane using polyethylene glycol and tartaric acid: morphology and performance in protein separation

  • Sharma, N.;Purkait, M.K.
    • Membrane and Water Treatment
    • /
    • 제8권6호
    • /
    • pp.591-612
    • /
    • 2017
  • Increase in the hydrophilicity (HPCT) of polysulfone (PS) membrane and subsequently decrease in fouling can be achieved by surface modification of PS based membranes. Therefore, in this work, ultrafiltration membranes with increased HPCT were prepared using the enantiomeric tartaric acid (D-TA) and racemic tartaric acid (DL-TA). Phase inversion technique was used for the preparation of polyethylene glycol and TA blended PS membrane. Morphological analysis of the fabricated membranes was done by scanning electron microscope and atomic force microscopy. Bovine serum albumin (BSA) solution was taken for finding the permeation and rejection behavior of prepared membranes. Maximum BSA rejection was increased by 70.5% for the modified membrane.

UV를 적용한 역삼투막의 실란-에폭시 표면 개질 및 특성 평가 (Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV)

  • 박희민;양원용;이용택
    • 멤브레인
    • /
    • 제28권3호
    • /
    • pp.169-179
    • /
    • 2018
  • 본 연구는 역삼투막의 물리-화학적 표면 개질을 통하여 친수성 증가에 따른 내오염성 및 내염소성을 향상하고자 하였다. 자외선조사로 상용막 표면을 활성화한 후 실란 커플링제를 sol-gel법으로 개질하여 염소에 대한 민감도를 낮춰 폴리아마이드 활성층을 보호하여 내염소성을 향상시켰다. 또한, 에폭사이드의 개수가 다른 PGPE, SPE 두 종류의 에폭시로 코팅 후 에폭사이드의 개환반응으로 내오염성을 향상시켰으며, 표면 개질 조건은 접촉각과 FT-IR, XPS 분석을 통해 최적화하였다. 실란-에폭시 개질막의 오염성 평가 결과 투과도 감소율이 상용막보다 약 1.5배 감소하였고, 내염소성 평가 결과 $20,000ppm{\times}hr$에서도 염제거율이 90% 이상 유지되었다.

Optimization and modification of PVDF dual-layer hollow fiber membrane for direct contact membrane distillation; application of response surface methodology and morphology study

  • Bahrami, Mehdi;Karimi-Sabet, Javad;Hatamnejad, Ali;Dastbaz, Abolfazl;Moosavian, Mohammad Ali
    • Korean Journal of Chemical Engineering
    • /
    • 제35권11호
    • /
    • pp.2241-2255
    • /
    • 2018
  • RSM methodology was applied to present mathematical models for the fabrication of polyvinylidene fluoride (PVDF) dual-layer hollow fibers in membrane distillation process. The design of experiments was used to investigate three main parameters in terms of polymer concentration in both outer and inner layers and the flow rate of dope solutions by the Box-Behnken method. According to obtained results, the optimization was done to present the proper membrane with desirable properties. The characteristics of the optimized membrane (named HF-O) suggested by the Box-Behnken (at the predicted point) showed that the proposed models are strongly valid. Then, a morphology study was done to modify the fiber by a combination of three types of a structure such as macro-void, sponge-like and sharp finger-like. It also improved the hydrophobicity of outer surface from 87 to $113^{\circ}$ and the mean pore size of the inner surface from 108.12 to 560.14 nm. The DCMD flux of modified fiber (named HF-M) enhanced 62% more than HF-O when it was fabricated by considering both of RSM and morphology study results. Finally, HF-M was conducted for long-term desalination process up to 100 hr and showed stable flux and wetting resistance during the test. These stepwise approaches are proposed to easily predict the main properties of PVDF dual-layer hollow fibers by valid models and to effectively modify its structure.

Preparation of novel NF membrane via interfacial cross-linking polymerization

  • Lehi, Arash Yunessnia;Akbari, Ahmad;Soleimani, Hosna
    • Membrane and Water Treatment
    • /
    • 제6권3호
    • /
    • pp.173-187
    • /
    • 2015
  • The goal of present work is the preparation of a novel positively charged nanofiltration (NF) membrane and its development for the cation removal of aqueous solutions. This NF membrane was fabricated by the surface modification of polysulfone (PSf) ultrafiltration support. The active top-layer was formed by interfacial cross-linking polymerization of poly(ethyleneimine) (PEI) with p-xylylene dichloride (XDC) and then quaternized with methyl iodide to form a perpetually positively charged layer. In order to improve the efficiency of nanofiltration membrane, the concentration of PEI, XDC and methyl iodide solutions, PEI coating and cross-linking time have been optimized. As a result, a high water flux and high $CaCl_2$ rejection (1,000 ppm) was obtained for the composite membrane with values of $18.29L/m^2.h$ and 93.62% at 4 bar and $25^{\circ}C$, respectively. The rejections of NF membrane for different salt solutions followed the order of $Na_2SO_4$ < $MgSO_4$ < NaCl < $CaCl_2$. Molecular weight of cut off (MWCO) was calculated via retaining of PEG solutions with different molecular weights that finally, it revealed the Stokes and hydrodynamic radius of 1.457 and 2.507 nm on the membrane selective layer, respectively. The most efficient positively charged nanofiltration membrane exhibited a $Ni^{2+}$ rejection of 96.26% for industrial wastewater from Shamse Hadaf Co. (Kashan, Iran).

Recent progress in supported liquid membrane technology: stabilization and feasible applications

  • Molinari, Raffaele;Argurio, Pietro
    • Membrane and Water Treatment
    • /
    • 제2권4호
    • /
    • pp.207-223
    • /
    • 2011
  • Supported Liquid Membranes (SLMs) have been widely studied as feasible alternative to traditional processes for separation and purification of various chemicals both from aqueous and organic matrices. This technique offers various advantages like active transport, possibility to use expensive extractants, high selectivity, low energy requirements and minimization of chemical additives. SLMs are not yet used at large scale in industrial applications, because of the low stability. In the present paper, after a brief overview of the state of the art of SLM technology the facilitated transport mechanisms of SLM based separation is described, also introducing the small and the big carrousel models, which are employed for transport modeling. The main operating parameters (selectivity, flux and permeability) are introduced. The problems related to system stabilization are also discussed, giving particular attention to the influence of membrane materials (solid membrane support and organic liquid membrane (LM) phase). Various approaches proposed in literature to enhance SLM stability are also reviewed. Modification of the solid membrane support, creating an additional layer on membrane surface, which acts as a barrier to LM phase loss, increases system stability, but the membrane permeability, and then the flux, decrease. Stagnant Sandwich Liquid Membrane (SSwLM), an implementation of the SLM system, results in both high flux and stability compared to SLM. Finally, possible large scale applications of SLMs are also reviewed, evidencing that if the LM separation process is opportunely carried out (no production of byproducts), it can be considered as a green process.

Vapor Permeation Characteristics of TiO2 Composite Membranes Prepared on Porous Stainless Steel Support by Sol-Gel Method

  • Lee, Yoon-Gyu;Lee, Dong-Wook;Kim, Sang-Kyoon;Sea, Bong-Kuk;Youn, Min-Young;Lee, Kwan-Young;Lee, Kew-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제25권5호
    • /
    • pp.687-693
    • /
    • 2004
  • Composite membranes with a titania layer were prepared by soaking-rolling method with the titania sol of nanoparticles formed in the sol-gel process and investigated regarding the vapor permeation of various organic mixtures. The support modification was conducted by pressing $SiO_2$ xerogel of 500 nm in particle size under 10 MPa on the surface of a porous stainless steel (SUS) substrate and designed the multi-layered structure by coating the intermediate layer of ${\gamma}-Al_2O_3$. Microstructure of titania membrane was affected by heat-treatment and synthesis conditions of precursor sol, and titania formed at calcination temperature of 300$^{\circ}C$ with sol of [$H^+$]/[TIP]=0.3 possessed surface area of 210 $m^2$/g, average pore size of 1.25 nm. The titania composite membrane showed high $H_2/N_2$ selectivity and water/ethanol selectivity as 25-30 and 50-100, respectively. As a result of vapor permeation for water-alcohol and alcohol-alcohol mixture, titania composite membrane showed water-permselective and molecular-sieve permeation behavior. However, water/methanol selectivity of the membrane was very low because of chemical affinity of permeants for the membrane by similar physicochemical properties of water and methanol.