Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.3.169

Characterization of Reverse Osmosis Membrane Surface Modified by Silane-epoxy Using UV  

Park, Hee Min (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Yang, Won Yong (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Lee, Yong Taek (Department of Chemical Engineering, College of Engineering, Kyung Hee University)
Publication Information
Membrane Journal / v.28, no.3, 2018 , pp. 169-179 More about this Journal
Abstract
The purposes of this paper were to improve both fouling and chlorine resistance by increasing the hydrophilicity of the reverse osmosis membrane. In order to improve chlorine resistance, the surface of RO membrane was activated by ultraviolet irradiation, and then it was modified by the sol-gel method using Octyltriethoxysilane (OcTES) such as the silane coupling agent to low sensitivity to chlorine, thereby the polyamide active layer was protected and chlorine resistance was improved. In addition, polyglycerol polyglycidyl ether (PGPE) and sorbitol polyglycidyl ether (SPE) coating with different number of epoxides, ring opening reaction of epoxide improved the anti-fouling resistance. The surface modification condition was optimized by FT-IR, XPS, and contact angle analysis. As a result, the permeability reduction rate of the silane-epoxy modified membrane after the fouling test was decreased about 1.5 times as compared with that of the commercial membrane. And the salt rejection was maintained over 90% at $20,000ppm{\times}hr$ even after chlorine resistance test.
Keywords
Reverse Osmosis; Fouling Resistance; Chlorine Resistance; UV etching; Ring-opening;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 E. M. Vrijenhoeka, S. K. Hong, and M. Elimelech, "Influence of membrane surface properties on initial rate of colloidal fouling of reverse osmosis and nanofiltration membranes", J. Membr. Sci., 188, 115 (2001).   DOI
2 R. Singh, "Characteristics of a chlorine-resistant reverse osmosis membrane", Desalination, 95, 27 (1994).   DOI
3 J. S. Louie, I. Pinnau, I. Ciobanu, K. P. Ishida, A. Ng, and M. Reinhard, "Effects of polyether-polyamide block copolymer coating on performance and fouling of reverse osmosis membranes", J. Membr. Sci., 280, 762 (2006).   DOI
4 Y. Baek, H. J. Kim, S.-H. Kim, J.-C. Lee, and J. Yoon, "Evaluation of carbon nanotube-polyamide thin-film nanocomposite reverse osmosis membrane: Surface properties, performance characteristics and fouling behavior", J. IND. ENG. CHEM., 56, 327 (2017).   DOI
5 A. Akbari, Z. Derikvandi, and S. M. Mojallali Rostami, "Influence of chitosan coating on the separation performance, morphology and anti-fouling properties of the polyamide nanofiltration membranes", J. IND. ENG. CHEM., 28, 268 (2015).   DOI
6 L. Ni, J. Meng, X. Li, and Y. Zhang, "Surface coating on the polyamide TFC RO membrane for chlorine resistance and antifouling performance improvement", J. Membr. Sci., 451, 205 (2014).   DOI
7 Y.-N. Kwon, S. Hong, H. Choi, and T. Tak, "Surface modification of a polyamide reverse osmosis membrane for chlorine resistance improvement", J. Membr. Sci., 415, 192 (2012).
8 S. Kwon and Y. T. Lee, "Improvement of fouling resistance with reverse osmosis membrane using multi-layer silane-epoxy surface modification", Membr. J., 25, 332 (2015).   DOI
9 Q.-H. Lu, M. Li, J. Yin, Z.-K. Zhu, and Z.-G. Wang, "Polyimide surface modification by pulsed ultraviolet laser irradiation with low fluence", Journal of Applied Polymer Science, 82, 2739 (2001).   DOI
10 S. Kwon, K. Y. Jee, and Y. T. Lee, "Surface modification of reverse osmosis membrane with diphenylamine for improved chlorine and fouling resistance", Membr. J., 23, 439 (2013).   DOI
11 V. Ganesana, P. K. Rastogia, R. Guptaa, M. T. Meredithb, and S. D. Minteer, "Ion exchange voltammetry at branched polyethylenimine cross-linked with ethylene glycol diglycidyl ether and sensitive determination of ascorbic acid", Electrochimica Acta, 105, 31 (2013).   DOI
12 T. M. Parrill and Y. W. Chung, "Surface analysis of cubic silicon carbide (001)", Surf. Sci., 243, 96 (1991).   DOI
13 M. P. Delplancke, J. M. Powers, G.J . Vandentop, M. Salmeron, and G. A. Somorjai, "Preparation and characterization of amorphous SiC:H thin films", J. Vac. Sci. Technol. A, 9, 450 (1991).   DOI
14 H. Iwakuro, M. Tokonami, T. Kuroda, S. Tamaki, and Y. Kitatsuji, "Interfacial layers of high-barrier schottky diode of Al/n-Type (100)Si exposed to H2 plasma", Jpn. J. Appl. Phys., 32, 5487 (1993).   DOI
15 J. Yip, K. Chan, K. M. Sin, and K. S. Lau "Study on the surface chemical properties of UV excimer laser irradiated polyamide by XPS, ToF-SIMS and CFM", Applied Surface Science, 205, 151 (2003).   DOI
16 S. A. Chambers and V. A. Loebs, "Structure and band bending at Si/GaAs(001)-($2{\times}4$) interfaces", Phys. Rev. B, 47, 9513 (1993).   DOI
17 P. Laoharojanaphand, T. J. Lin, and J. O. Stoffer, "Glow discharge polymerization of reactive functional silanes on poly(methyl methacrylate)", J. Appl. Polymer Sci., 40, 369 (1990).   DOI
18 Z. Yang, X. F. Peng, M.-Y. Chen, D.-J. Lee, and J. Y. Lai, "Intra-layer flow in fouling layer on membranes", J. Membr. Sci., 287, 280 (2007).   DOI
19 A. Shimojima, Z. Liu, T. Ohsuna, O. Terasaki, and K. Kuroda, "Self-assembly of designed oligomeric siloxanes with alkyl chains into silica-based hybrid mesostructures", J. AM. CHEM. SOC., 127, 14108 (2005).   DOI
20 L. Zoua, I. Vidalis, D. Steele, A. Michelmore, S. P. Low, and J. Q. J. C. Verberk, "Surface hydrophilic modification of RO membranes by plasma polymerization for low organic fouling", J. Membr. Sci., 369, 420 (2011).   DOI
21 M. Hirose, H. Ito, and Y. Kamiyama, "Effect of skin layer surface structures on the flux behavior of RO membranes", J. Membr. Sci., 121, 209 (1996).   DOI
22 X. Song, J. Zhai, Y. Wang, and L. Jiang, "Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties", J. Phys. Chem. B, 109, 4048 (2005).   DOI
23 S. Avlonitis, W. T. Hanbury, and T. Hodgkiess, "Chlorine degradation of aromatic polyamidess", Desalination, 85, 321 (1992).   DOI
24 S. H. Son and J. Jegal, "Preparation and characterization of polyamide thin film composite reverse osmosis membranes using hydrophilic treated microporous supports", Membr. J., 24, 317 (2014).   DOI
25 J. Glater, S. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994).   DOI
26 R. W. Baker, "Membrane technology and applications" 2nd edition, Wiley (2004).
27 D. Li and H. Wang, "Recent developments in reverse osmosis desalination membranes", J. Mater. Chem., 20, 4551 (2010).   DOI
28 L. F. Greenlee, D. F. Lawler, B. D. Freeman, B. Marrot, and P. Moulin, "Reverse osmosis desalination: Water sources, technology, and today's challenges", Water Research, 43, 2317 (2009).   DOI
29 G.-R. Xu, J.-N. Wang, and C.-J. Li, "Strategies for improving the performance of the PA thin film composite (PA-TFC) reverse osmosis (RO) membranes: Surface modifications and nanoparticles incorporations", Desalination, 328, 83 (2013).   DOI
30 D. H. Shin, N. Kim, and Y. T. Lee, "Modification to the polyamide tfc ro membranes for improvement of chlorine-resistance", J. Membr. Sci., 376, 302 (2011).   DOI
31 J. Glater, S. K. Hong, and M. Elimelech, "The search for a chlorine-resistant reverse osmosis membrane", Desalination, 95, 325 (1994).   DOI