• Title/Summary/Keyword: membrane property

Search Result 347, Processing Time 0.03 seconds

A Study on the Field Application Analysis for High Adhesive Spray Type of Degenerated and Rubberized Asphalt Membrane Material (스프레이식 고점착 변성 고무 아스팔트 도막 방수재의 현장 적용성 평가에 관한 실험적 연구)

  • Oh, Sang-Keun;Kwak, Kyu-Sung;Choi, Sung-Min;Song, Je-Young
    • Journal of the Korea Institute of Building Construction
    • /
    • v.6 no.4 s.22
    • /
    • pp.85-92
    • /
    • 2006
  • Urethane, epoxy, acrylic have common property to adhere on the concrete dried surface in the waterproofing materials at present. In the wet condition, however, the materials such as urethane, epoxy, acrylic need a long hardening time and it become a reason of water leakage as the materials breaking down. it is one of the problem to adhere to the substrate. Therefore, in this thesis, I focused to assure the structural safety and durability and quality for waterproofing and safe of construction cost by cut down the cost of labor and reduce the term of works as searching the application of field condition for high adhesive spray type of degenerated and rubberized asphalt membrane material.

Modularized Membrane Generation Method by Using Digital Property - Based on digital parametric design- (디지털 물성을 이용한 모듈화 표피생성방법 연구 - 디지털 파라메트릭디자인 중심으로 -)

  • Park, Jeong-Ju
    • Korean Institute of Interior Design Journal
    • /
    • v.19 no.1
    • /
    • pp.137-147
    • /
    • 2010
  • The purpose of this study is to research a method of creating a new type of boundary by repeated disposition of single unit of modularized membrane successively. In the contemporary architectural indoor space, more highly dimensional analysis of boundary is required and the necessity of establishing boundary of a new concept that may satisfy cultural value, social value and artistic value as a whole as well as aesthetic and functional merit has been increased. In order to create a membrane that may fulfil the requirements of the diversified programs of space like this, an approach of complicated mechanism and high-dimensional calculation are required. At this time, digital GA modelling, parametric modelling technique may expand its range of possibility. One thing to be noted at this juncture is that indefinite expandability involved in digital modelling technique, modelling by grid of absolute and relative coordinates and convenience of systematization may surpass limitation of analogue or simple numerical calculation being progressed in the past. And in order to create solid process including unit modelling or pattern formation, Precise calculation process of computer is necessitated inevitably.

Anion Transport or Nucleotide Binding by Ucp2 Is Indispensable for Ucp2-Mediated Efferocytosis

  • Lee, Suho;Moon, Hyunji;Kim, Gayoung;Cho, Jeong Hoon;Lee, Dae-Hee;Ye, Michael B.;Park, Daeho
    • Molecules and Cells
    • /
    • v.38 no.7
    • /
    • pp.657-662
    • /
    • 2015
  • Rapid and efficient engulfment of apoptotic cells is an essential property of phagocytes for removal of the large number of apoptotic cells generated in multicellular organisms. To achieve this, phagocytes need to be able to continuously uptake apoptotic cells. It was recently reported that uncoupling protein 2 (Ucp2) promotes engulfment of apoptotic cells by increasing the phagocytic capacity, thereby allowing cells to continuously ingest apoptotic cells. However, the functions of Ucp2, beyond its possible role in dissipating the mitochondrial membrane potential, that contribute to elevation of the phagocytic capacity have not been determined. Here, we report that the anion transfer or nucleotide binding activity of Ucp2, as well as its dissipation of the mitochondrial membrane potential, is necessary for Ucp2-mediated engulfment of apoptotic cells. To study these properties, we generated Ucp2 mutations that affected three different functions of Ucp2, namely, dissipation of the mitochondrial membrane potential, transfer of anions, and binding of purine nucleotides. Mutations of Ucp2 that affected the proton leak did not enhance the engulfment of apoptotic cells. Although anion transfer and nucleotide binding mutations did not affect the mitochondrial membrane potential, they exerted a dominant-negative effect on Ucp2-mediated engulfment. Furthermore, none of our Ucp2 mutations increased the phagocytic capacity. We conclude that dissipation of the proton gradient by Ucp2 is not the only determinant of the phagocytic capacity and that anion transfer or nucleotide binding by Ucp2 is also essential for Ucp2-mediated engulfment of apoptotic cells.

Characteristics of Molecular Band Energy Structure of Lipid Oxidized Mammalian Red Blood Cell Membrane by Air-based Atmospheric Pressure Dielectric Barrier Discharge Plasma Treatment

  • Lee, Jin Young;Baik, Ku Youn;Kim, Tae Soo;Jin, Gi-Hyeon;Kim, Hyeong Sun;Bae, Jae Hyeok;Lee, Jin Won;Hwang, Seung Hyun;Uhm, Han Sup;Choi, Eun Ha
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.262.1-262.1
    • /
    • 2014
  • Lipid peroxidation induces functional deterioration of cell membrane and induces cell death in extreme cases. These phenomena are known to be related generally to the change of physical properties of lipid membrane such as decreased lipid order or increased water penetration. Even though the electric property of lipid membrane is important, there has been no report about the change of electric properties after lipid peroxidation. Herein, we demonstrate the molecular energy band change in red blood cell membrane through peroxidation by air-based atmospheric pressure DBD plasma treatment. Ion-induced secondary electron emission coefficient (${\gamma}$ value) was measured by using home-made gamma-focused ion beam (${\gamma}$-FIB) system and electron energy band was calculated based on the quantum mechanical Auger neutralization theory. The oxidized lipids showed higher gamma values and lower electron work functions, which implies the change of surface charging or electrical conductance. This result suggests that modified electrical properties should play a role in cell signaling under oxidative stress.

  • PDF

Anisotropic Wet Etching of Single Crystal Silicon for Formation of Membrane Structure (멤브레인 구조 제작은 위한 단결정 실리콘의 이방성 습식 식각)

  • 조남인;강창민
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.4
    • /
    • pp.37-40
    • /
    • 2003
  • We have studied micro-machining technologies to fabricate parts and sensors used in the semiconductor equipment. The studies were based on the silicon integrated circuit processes, and composed of the anisotropic etching of single crystal silicon to fabricate a membrane structure for hot and cold junctions in the infrared absorber. KOH and TMAH were used as etching solutions for the anisotropic wet etching for membrane structure formation. The etching characteristic was observed for the each solution, and etching rate was measured depending upon the temperature and concentration of the etching solution. The different characteristics were observed according to pattern directions and etchant concentration. The pattern was made to incline $45^{\circ}$ on the primary flat, and optimum etching property was obtained in the case of 30 wt% and $90^{\circ}C$ of KOH etching solution for the formation of the membrane structure.

  • PDF

Microfluidic chip for characterization of mechanical property of cell by using impedance measurement (임피던스 측정을 이용한 세포의 변형성 분석용 미소유체 칩)

  • Kim, Dong-Il;Choi, Eun-Pyo;Chio, Sung-Sik;Park, Jung-Yul;Lee, Sang-Ho;Yun, Kwang-Seok
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.42-47
    • /
    • 2009
  • In this paper we propose a microfluidic chip that measures the mechanical stiffness of cell membrane using impedance measurement. The microfluidic chip is composed of PDMS channel and a glass substrate with electrode. The proposed device uses patch-clamp technique to capture and deform a target cell and measures impedance of deformed cells. We demonstrated that the impedance increased after the membrane stretched and blocked the channel.

The Characteristics Evaluation of the Gas Diffusion Layer for a PEM Fuel Cell by Computational Fluid Dynamics (CFD 해석을 이용한 PEMFC 용 기체확산층의 특성평가)

  • Kim B.H.;Choi J.P.;Jeon B.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.207-210
    • /
    • 2005
  • In this paper, a two-dimensional cross-channel model was applied to investigate influence of the gas diffusion layer(GDL) property and flow field geometry in the anode side for proton exchange membrane fuel cell(PEMFC). The GDL is made of a porous material such as carbon cloth, carbon paper, or metal wire mesh. To the simplicity, the GDL is represented as a block of material containing numerous pathways through which gaseous reactants and liquid water can pass. The purpose of present work was to study the effect of the GDL thickness and the porosity, and flow field geometry by computational fluid dynamics(CFD)

  • PDF

The Deposition Characterization of DLPC Lipid Membrane by Moving Wall Type LB Methode (Moving Wall형 LB법에 의해서 제작된 DLPC 지질막의 누적특성)

  • 정용호;이우선;김남오;이경섭
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.342-345
    • /
    • 1997
  • We fabricated the sample of u1tra thin lipid membrane(L-${\alpha}$-DLPC ) by LB methode. The $\pi$-A isotherm of the DLPC was measured at the air-water interface varying with the compressing speed and amounts of solutions for spreading. For good property of lipid monolayer film, it was necessary for the lower speed of compressing, and 40${\mu}\ell$ of solutions for spreading. The molecular arrangement of deposited films were evaluated by measuring the absorption, transmitance and intensity with the UV spectrophotometer. The Y-type multilayers prepared at 50mN/m showed weaker than Z-type. So we found building-up of structurally high quality LB films is essential to study properties of the films and to get reproducible data.

  • PDF

Application Properties of Ultra Light Weight Silica Aerogel to Polyurethane Membrane (극초경량 실리카 에어로겔의 폴리우레탄 멤브레인 적용 특성)

  • Min, Munhong;Jeong, Cheonhee;Yoon, Seokhan;Yang, Junghan;Kim, Taekyeong
    • Textile Coloration and Finishing
    • /
    • v.25 no.4
    • /
    • pp.279-286
    • /
    • 2013
  • Application properties of ultra light weight silica aerogel toward polyurethane membranes were investigated. From the results of pre-milling process of the silica aerogel, the solvent for dispersion of the aerogel was determined for methyl ethyl ketone and its content in the solvent was determined by 30%. Using this aerogel dispersion, the polyurethane membranes were prepared according to the mixing amount of silica aerogel and various properties of the membranes were investigated. As results, the optimum mixing amount of silica aerogel inside polyurethane membranes was decided at 11%, because the improvement of light weight property, air permeability, and moisture vapor permeability were improved upto 11% of silica aerogel content, maintaining the water penetration resistance almost unchanged.