• Title/Summary/Keyword: membrane properties

Search Result 1,531, Processing Time 0.034 seconds

Improving hydrophilic and antimicrobial properties of membrane by adding nanoparticles of titanium dioxide and copper oxide

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.481-487
    • /
    • 2018
  • Membrane clogging or fouling of the membrane caused by organic, inorganic, and biological on the surface is one of the main obstacles to achieve high flux over a long period of the membrane filtration process. So researchers have been many attempts to reduce membrane fouling and found that there is a close relationship between membrane surface hydrophilicity and membrane fouling, such that the same conditions, a greater hydrophilicity were less prone to fouling. Nanotechnology in the past decade is provided numerous opportunities to examine the effects of metal nanoparticles on the both hydrophilic and antibacterial properties of the membrane. In the present study the improvement of hydrophilic and antimicrobial properties of the membrane was evaluated by adding nanoparticles of titanium dioxide and copper oxide. For this purpose, 4% copper oxide and titanium dioxide nanoparticles with a ratio of 0, 30, 50, and 70% of copper oxide added to the polymeric membrane and compare to the pure polymeric membrane. Comparison experiments were performed on E. coli PTCC1998 in two ways disc and tube and also to evaluate membrane hydrophilic by measuring the contact angle and diameter of pores and analysis point SEM has been made. The results show that the membrane-containing nanoparticle has antibacterial properties and its impact by increasing the percentage of copper oxide nanoparticles increases.

Staining Properties of Waterborne PU Membranes (수분산 PU막의 염색 오염성)

  • 정동석;이문철
    • Textile Coloration and Finishing
    • /
    • v.15 no.5
    • /
    • pp.285-293
    • /
    • 2003
  • Waterborne PU membrane was prepared from waterborne PU dispersion solution to investigate physical and staining properties. The staining properties of waterborne PU membrane with acid dyes and disperse dyes were observed. The physical properties of the PU membrane were investigated by X-ray diffraction and IR spectroscopy. The staining property of waterborne PU membrane for azo acid dyes is better than that of disperse dyes. X-ray diffraction peaks sharpened and tensile strain and stress increased with heat setting temperature.

Transport Properties of Charged Mosaic Membrane Based on Non-equilibrium Thermodynamics

  • Song, Myung-Kwan;Yang, Wong-Kang
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.67-70
    • /
    • 2005
  • It is well known as the role of ion exchange membrane with functional group in membrane matrix. Recently, we were reported that the charged mosaic membrane within parallel array of negative and positive charge groups. In this study we are reported the properties for the various transport coefficients of metal and heavy metal ions across charged mosaic membrane based on non-equilibrium thermodynamics is not based on equilibrium state.

Prediction of Intrinsic Pore Properties of Ultrafiltration Membrane by Solute Rejection Curves (용질배제 곡선에 의한 한외여과 막의 세공특성 예측)

  • 염경호
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1991.10a
    • /
    • pp.4-8
    • /
    • 1991
  • The characterization of pore properties (mean pore size and pore size distribution) of the active layer in a UF membrane is important not only in order to obtain information about the factors affecting pore formation during membrane manufacturing but also to understand deeply the mechanism of solute and solvent transport through pores. Many methods of characterizing quantitatively the pore properties of UF membranes have been suggested in the literature: solvent and gas flow measurement, bubble point determination, electron microscopy, gas adsorption/desorption measurement, rejection measurement etc. But most of these methods involve time-consuming procedures and involve some wellknown problems and uncertainties.

  • PDF

Morphological Effect of Dispersed Phase on Gas Separation Properties through Heterophase Polymer Membrane: Theoretical and Experimental Approaches.

  • Park, Cheolmin;Jo, Won-Ho;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.55-56
    • /
    • 1996
  • Heterophase polymer system has been attractive for a potential applicability to gas separation membrane material. It has been known that there is a trade-off between gas permeability and its selectivity in common polymers. Therefore, the heterophase polymer can be an alternative for a gas separation membrane material because its transport properties can be readily controlled by blending of two different polymers. The transport properties of immiscible polymer blends strongly depend upon the intrinsic transport properties of corresponding polymers. Another important factor to determine the transport properties is their morphology: volume fraction, size and shape of dispersed phase. Although the effect of the volume fraction of the dispersed phase on the transport properties has been widely investigated, the size and shape effects have been paid attention very much. In an immiscible polymer blend of two polymers, its morphology is primarily controlled by its volume fraction of dispersed phase. Therefore, the effect of the size of the dispersed phase can be hardly seen. Therefore, a block copolymer has been commonly employed to control their morphology when each block is miscible with one or the other phase. In this work, gas transport properties will be measured by varying the morphology of the heterophase polymer membrane. The transport properties will be interpreted in terms of their morphology. The effect of the volume fraction of the PI phase and, in particular, its size effect will be investigated experimentally and theoretically.

  • PDF

Sound Absorption and Thermal Insulation Characteristics of Membrane Used for Sound Field Control (음장제어용 막재료의 음향 및 단열특성)

  • Jeong, Jeong-Ho;Kim, Jeong-Uk;Jeong, Jae-Gun;Cho, Byung-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.2
    • /
    • pp.103-114
    • /
    • 2012
  • Nowadays membrane material is widely used for large indoor spaces and long spaces such as traditional market. Thermal insulation and sound field control performance is considered as a main properties for design of such buildings. In this paper sound absorption and thermal insulation properties of membrane material was investigated. Firstly, normal incidence sound absorption coefficient of 10 kinds of glass wool textiles showed that sound absorption coefficient was increased in proportion of thickness and surface density of textile. Sound absorption coefficient of 4 kinds of sound absorptive inner membrane with outer membrane was tested in the reverberation chamber. Sound absorption coefficient of mid frequency range was about 0.4 ~ 0.6. Also, sound absorption coefficient was changed by the air space behind the membrane material. Secondly, sound field control performance was investigated using mock-up space. By the installation of sound absorption membrane material, reverberation time was decreased and speech intelligibility was increased. Finally, thermal resistance and room temperature in two kinds of mock-up rooms were tested, simultaneously. Results of thermal properties showed thermal insulation properties ware increased by adding inner membrane material underneath the outer membrane.

Modified membrane with antibacterial properties

  • Aryanti, P.T.P.;Sianipar, M.;Zunita, M.;Wenten, I.G.
    • Membrane and Water Treatment
    • /
    • v.8 no.5
    • /
    • pp.463-481
    • /
    • 2017
  • Bacteria have been considered as a major foulant that initiates the formation of biofilm on the polymeric membrane surface. Some polymeric membranes are naturally antibacterial and have low fouling properties, however, numerous efforts have been devoted to improve their antibacterial performance. These modifications are mostly carried out through blending the membrane with an antibacterial agent or introducing the antibacterial agent on the membrane surface by chemical grafting. Currently, a significant number of researches have reported nanocomposite membrane as a new approach to fabricate an excellent antibacterial membrane. The antibacterial nanoparticles are dispersed homogenously in membrane structure by blending method or coating onto the membrane surface. Aim of the modifications is to prevent the initial attachment of bacteria to membrane surface and kill bacteria when attached on the membrane surface. In this paper, several studies on antibacterial modified membranes, particularly for water treatment, will be reviewed comprehensively. Special attention will be given on polymeric membrane modifications by introducing antibacterial agents through different methods, such as blending, grafting, and coating.

Transport Properties of Crosslinked Poly Vinyl Alcohol Membrane in Pervaporation

  • Lee, Chul-Haeng;Hong, Won-Hi
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.10a
    • /
    • pp.92-93
    • /
    • 1996
  • PVA membrane was widely used in the dehydration pervaporation process. PVA membrane showed remakable selectivity towed water and an excellent film-forming polymer, with a good resistance to orgamic solvents but it has poor stability in aqueous mixtures. Generally the PVA is manufactured by the hydrolysis reaction from poly vinyl acetate(PVAc) and so the degree of PVA hydrolysis is a major parameter for properties of PVA membrane such as the crystallinity and polarity.

  • PDF

A Study on the Changes in Mechanical Properties by the Hydration of Polymer Electrolyte Membrane (고분자전해질막의 수화에 의한 기계적 특성의 변화 연구)

  • EO, JUNWOO;JUNG, YOUNGGUAN;SEO, YOUNGJIN;LEE, DONGBAE;HWANG, CHULMIN;KIM, SEUNGHWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.33 no.3
    • /
    • pp.219-225
    • /
    • 2022
  • In this study, as one part of the studies on the mechanical properties of the polymer electrolyte membrane, a study was conducted on the change in the mechanical properties due to hydration before and after aging of the polymer electrolyte membrane. The mechanical properties of the polymer electrolyte membrane changes due to hydration were confirmed through tensile tests of hydrated and non-hydrated Nafion 117. As results of this study, non-hydrated membrane showed higher mechanical properties than hydrated thing in the elastic region and some plastic regions. But, it was confirmed that hydrated membrane exhibited higher mechanical properties than non-hydrated thing in the large plastic region. Hydrated membrane has a lower glass transition temperature than non-hydrated thing due to the role of water as a plasticizer. In addition, the number of ion aggregates decreases, but the size increases, and the hydrated Nafion 117 is thought to have different mechanical properties from that of the non-hydrated thing due to the characteristic that the internal attraction is strengthened.