• Title/Summary/Keyword: membrane porosity

Search Result 156, Processing Time 0.028 seconds

Microfiltration/ultrafiltration polyamide-6 membranes for copper removal from aqueous solutions

  • El-Gendi, Ayman;Ali, Sahar;Abdalla, Heba;Saied, Marwa
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.55-70
    • /
    • 2016
  • Microfiltration/ultrafiltration (MF/UF) Adsorptive polyamide-6 (PA-6) membranes were prepared using wet phase inversion process. The prepared PA-6 membranes are characterized by scanning electron microscopy (SEM), porosity and swelling degree. In this study, the membranes performance has examined by adsorptive removal of copper ions from aqueous solutions in a batch adsorption mode. The $PA-6/H_2O$ membranes display sponge like and highly porous structures, with porosities of 41-73%. Under the conditions examined, the adsorption experiments have showed that the $PA-6/H_2O$ membranes had a good adsorption capacity (up to 120-280 mg/g at the initial copper ion concentration ($C_0$) = 680 mg/L, pH7), fast adsorption rates and short adsorption equilibrium times (less than 1.5-2 hrs) for copper ions. The fast adsorption in this study may be attributed to the high porosities and large pore sizes of the $PA-6/H_2O$ membranes, which have facilitated the transport of copper ions to the adsorption. The results obtained from the study illustrated that the copper ions which have adsorbed on the polyamide membranes can be effectively desorbed in an Ethylene dinitrilotetra acetic acid Di sodium salt ($Na_2$ EDTA) solution from initial concentration (up to 92% desorption efficiency) and the PA-6 membranes can be reused almost without loss of the adsorption capacity for copper ions. The results obtained from the study suggested that the $PA-6/H_2O$ membranes can be effectively applied for the adsorptive removal of copper ions from aqueous solutions.

Development Trend of Nanofiber Filter (나노섬유 필터의 개발 동향)

  • Kang Inn-Kyu;Kim Young-Jin;Byun Hong-Sik
    • Membrane Journal
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2006
  • Nanofiber is a broad phrase generally referring to a fiber with diameter less than 1 micron. Various polymers have been successfully electrospun into nanofibers in recent years. These nanofibers, due to their high surface area and porosity, have a great potential for use as filter medium, adsorption layers in protective clothing, etc. Nanofiber filters will enable new levels of filtration performance in the field of air filtration. In particular, nanofibers provide marked increases in filtration efficiency at relatively small pressure drop in permeability. Therefore, nanofiber filters could be substituted for conventional filter market due to the easy application of process and the possibility of coating to micron-sized non-woven sheets. This review is discussed on the trend of researche and development related to nanofiber filter including future marketability.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

Fabrication and Characterization of Novel Electrospun PVPA/PVA Nanofiber Matrix for Bone Tissue Engineering

  • Franco, Rose-Ann;Nguyen, Thi Hiep;Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.51.2-51.2
    • /
    • 2011
  • A novel electrospun nanofiber membrane was fabricated using combined poly (vinylphosphonic acid) (PVPA) and polyvinyl alcohol (PVA) intended for bone tissue engineering applications. PVPA is a proton-conducting polymer used as primer for bone implants and dental cements to prevent corrosion and brush abrasion. The phosphonate groups of PVPA have the ability to crosslink and attach itself to the hydroxyapatite surface facilitating faster integration of the biomaterial to the bone matrix. PVA was combined with PVPA to provide hydrophilicity, biocompatibility and improve its spinnability. To improve its mechanical strength, PVPA/PVA and neat PVA mixtures were combined to produce a multilayer scaffold. The physical and chemical properties of the of the fabricated matrix was investigated by SEM and TEM morphological analyses, tensile strength test, XRD, FT-IR spectra, swelling behavior and biodegradation rates, porosity and contact angle measurements. Biocompatibility was also examined in vitro by cytotoxicity and cell proliferation studies with MTT assay and cell adhesion behavior by SEM and confocal microscopy.

  • PDF

A Study on the Mass Flow Effects to the Performance of PEMFC (고분자 전해질형 연료전지내의 질량유동이 성능에 미치는 영향)

  • Park, Chang-Kwon;Jo, In-Su;Oh, Byeong-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.422-431
    • /
    • 2007
  • Polymer electrolyte membrane fuel cell(PEMFC) is very interesting power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, improvement of performance and effect of temperature. These problems can be approached to be solved by using mathematical models which are useful tools for analysis and optimization of fuel cell performance and for heat and water management. In this paper, the present work is to develop an electrochemical model to examine the electrochemical process inside PEM fuel cell. A complete set of considerations of mass, momentum, species and charge is developed and solved numerically with proper account of electrochemical kinetics. When depth of gas channel becomes thinner, diffusion of reactant makes well into gas diffusion layer(GDL) and the performance increases. Although at low current region there is little voltage difference between experimental data of PEM fuel cell and numerical data. When the porosity size of gas diffusion layer for PEM fuel cell is bigger, oxygen diffusion occurs well and oxygen mass fraction appears high in catalyst layer.

New Separators Based on Non-Polyolefin Polymers for Secondary Lithium Batteries

  • Seol, Wan-Ho;Lee, Yong-Min;Lee, Jun-Young;Han, Young-Dal;Ryu, Myung-Hyun;Park, Jung-Ki
    • Journal of the Korean Electrochemical Society
    • /
    • v.10 no.2
    • /
    • pp.82-87
    • /
    • 2007
  • New porous separators based on non-polyolefin materials including the blend of poly (vinyl chloride) (PVC)/poly (vinylidene fluoride-co-hexafluoropropylene) (P(VdF-co-HFP)/poly(methyl methacrylate) (PMMA), and the porous separator based on poly (vinylidene fluoride) (PVdF) were prepared by phase inversion method. The porosity and morphology were controlled with phase inversion rate, which is governed by the relative content of non-solvent and solvent in coagulation bath. To enhance tensile strength, the solvent pre-evaporation and uni-axial stretching processes were applied. The ionic conductivity was increased with increasing stretching ratio, and tensile strength was increased with increasing solvent pre-evaporation time and stretching ratio. The 200% stretched PVdF separator showed 56 MPa of tensile strength, and the ionic conductivity of the stretched PVdF separator was $8.6{\times}10^{-4}\;S\;cm^{-1}\;at\;25^{\circ}C$.

Development of an Acoustic-Based Underwater Image Transmission System

  • Choi, Young-Cheol;Lim, Yong-Kon;Park, Jong-Won;Kim, Sea-Monn;Kim, Seung-Geun;Kim, Sang-Tae
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.109-114
    • /
    • 2003
  • Wireless communication systems are inevitable for efficient underwater activities. Because of the poor propagation characteristics of light and electromagnetic waves, acoustic waves are generally used for the underwater wireless communication. Although there are many kinds of information type, visual images take an essential role especially for search and identification activities. For this reason, we developed an acoustic-based underwater image transmission system under a dual use technology project supported by MOCIE (Ministry of Commerce, Industry and Energy). For the application to complicated and time-varying underwater environments all-digital transmitter and receiver systems are investigated. Array acoustic transducers are used at the receiver, which have the center frequency of 32kHz and the bandwidth of 4kHz. To improve transmission speed and quality, various algorithms and systems are used. The system design techniques will be discussed in detail including image compression/ decompression system, adaptive beam- forming, fast RLS adaptive equalizer, ${\partial}/4$ QPSK (Quadrilateral Phase Shift Keying) modulator/demodulator, and convolution coding/ Viterbi. Decoding.

  • PDF

The Properties of Fine Drop Jetting Actuator at Various PZT Powder Composition (파우더 조성에 따른 PZT의 미세액적 토출 액츄에이터 특성)

  • Kim, Young-Jae;Yoo, Young-Seuck;Park, Sung-Jun;Kim, Soon-Young;Sim, Won-Chul;Hong, Sae-Won;Joung, Jae-Woo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.340-341
    • /
    • 2005
  • Three different composition 130um thickness PZT were fabricated by extrusion method and burned out at $550^{\circ}C$ and sintered at $1260^{\circ}C$/2.5hrs. Actuator was fabricated using glass and Si(100) wafer by MEMS process. From XRD data, in case of DECH, perovskite phase peak strength is higher than others. We were able to obtain the information of grain growth and porosity by SEM images. Also DECH PZT on glass membrane(100um thickness) have larger displacement than others.

  • PDF

Thin-Film Composite (TFC) Membranes with Hydrophilic Ethyl Cellulose-g-poly(ethylene glycol) (EP) Substrates for Forward Osmosis (FO) Application (친수성을 가지는 에틸셀룰로스-폴리에틸렌글리콜 가지형 고분자의 정삼투 복합막 지지층으로의 응용)

  • Yu, Yun Ah;Kim, Jin-joo;Kang, Hyo;Lee, Jong-Chan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.4
    • /
    • pp.510-518
    • /
    • 2016
  • Ethyl cellulose-g-poly(ethylene glycol) (EP) was synthesized by esterification of carboxylic acid functionalized methoxy polyethylene glycol (MPEG-COOH) with ethyl cellulose (EC) in order to develop a hydrophilic substrate for thin-film composite (TFC) membrane in a forward osmosis (FO) system. A porous EP substrate, fabricated by a non-solvent induced phase separation method, was found to be more hydrophilic than the EC substrate due to the presence of polyethylene glycol (PEG) side chains in the EP. Since the EP substrate exhibits smaller water contact angles and higher porosity, the structural parameter (S) of TFC-EP is smaller than that of TFC-EC, indicating that internal concentration polarization (ICP) within porous substrates can occur less when TFC-EP is used as a membrane. For example, the water flux value of the TFC-EP is 15.7 LMH, whereas the water flux value of the TFC-EC is only 6.6 LMH. Therefore, we strongly believe that the TFC-EP could be a promising candidate with good FO performances.

Gas Permeation Characteristics of PEBAX-PEI Composite Membranes Containing ZIF-8@GO (ZIF-8@GO를 함유한 PEBAX-PEI 복합막의 기체투과 특성)

  • Yi, Eun Sun;Hong, Se Ryeong
    • Applied Chemistry for Engineering
    • /
    • v.32 no.4
    • /
    • pp.431-441
    • /
    • 2021
  • In this study, PEBAX/GO-PEI and PEBAX/ZIF-8@GO-PEI composite membranes were prepared by varying the contents of GO and ZIF-8@GO in PEBAX, and also the gas permeation characteristics of N2 and CO2 was studied. Overall, the N2 and CO2 permeability of the PEBAX/GO-PEI composite membrane decreased as the GO content increased, and the CO2/N2 selectivity slightly increased. In the case of PEBAX/ZIF-8@GO-PEI composite membrane, the permeability of N2 decreased, but CO2 increased to 1 wt% of ZIF-8@GO and then decreased in the content thereafter. The CO2/N2 selectivity at 1 wt% of ZIF-8@GO was 92.3, showing the highest selectivity. This is thought to be due to the greatest effect of GO and ZIF-8 with good affinity for CO2 alongside the effect of porosity ZIF-8 while improving compatibility with PEBAX and dispersing evenly. In addition, PEBAX/ZIF-8@GO-PEI composite membrane improved both CO2 permeability and CO2/N2 selectivity than those of the PEBAX-PEI and PEBAX/GO-PEI membranes, except for ZIF-8@GO 5 wt%. The result was close to the Robeson upper bound.