• Title/Summary/Keyword: membrane modification

Search Result 278, Processing Time 0.025 seconds

Modification of EPDM Rubbers for Enhancement of Environmental Durability of Aerator Membrane (산기관용 멤브레인 고무판의 환경내구성 향상을 위한 EPDM 고무의 개질)

  • Ahn, Won-Sool
    • Journal of Environmental Science International
    • /
    • v.17 no.1
    • /
    • pp.107-112
    • /
    • 2008
  • A study on the enhancement of environmental durability of EPDM rubber materials for the aerator membrane was performed using a butyl rubber as a modifier. A conventional EPDM rubber formulation was evaluated as having about 26.0 wt% or more oil content from the chloroform immersion test. These oils would be gradually and continuously deleted from the aerator membrane when directly exposed to a waste-water or chemically corrosive fluids, making the membrane less flexible and the performance worse. To improve this, a butyl rubber (IIR) was utilized as the modifier for a low-ENB type of EPDM rubber formulation with low-oil content. The environmental durability of the IIR-modified EPDM rubber material was expected to be greatly enhanced compared to the conventional one. However, the mechanical and performance properties such as elongation, tensile strength, and air bubble size, etc. were still maintained as good as in the conventional one. Furthermore, TGA analysis of the IIR-modified EPDM material showed that there would be partially compatible between IIR and EPDM. It also showed that the initial degradation temperature of the IIR-modified EPDM could be somewhat increased, exhibiting the enhanced compatibility among the components and, thereby, more enhanced environmental durability.

Effect of Taurine Supplementation on Lipid Peroxidation, Activities of Defense Enzymes and Membrane Stability During Rat Hepatocarcinogenesis (쥐의 간암화 과정에서 타우린의 공급이 지질과산화물 함량, 생체방어 효소 및 세포막 안정도에 미치는 영향)

  • 유정순
    • Journal of Nutrition and Health
    • /
    • v.29 no.10
    • /
    • pp.1080-1086
    • /
    • 1996
  • The purpose of this study was to determine the effects of taurine supplementation on the hepatic lipid peroxidation, activiteis of defense enzymes and membrane stability during rat hepatocarcinogenesis. Hepatocarcinogenesis was induced by Solt & Farber modification. Lipid peroxide contents of carcinogen treated group which was not supplemented with taurine were lower than those of control group. This might be that peroxide is decreased because of the activation of detoxifing enzyme. Glutathione S-transferase(GST) activites of carcinogen treated groups were significantly (p<0.05) increased compared to those of control groups. The GST activities of group supplemented with taurine before treatment of carcinogen and during the all period of experiment were only less increased. In carcinogen treated groups, glutathione peroxidase(GPx) activites of groups supplemented with taurine were higher than those of non supplemented group. By carcinogen treatemtn, glucose 6-phosphatase(G6Pase) activites, index of membrane stability were decreased, but in carcinogen treated groups supplemented with taurine, they were less decreased. These results suggest that taurine supplementation seems to inhibit lipid peroxidation, to change the activities of defense enzymes and to prevent to membrane disintegration during chemically induced hepatocarcinogenesis.

  • PDF

Current Research Trends in Water Treatment Membranes Based on Nano Materials and Nano Technologies (나노 기술을 이용한 수처리 분리막 소재의 최근 연구동향)

  • Lee, Hee Dae;Cho, Young Hoon;Park, Ho Bum
    • Membrane Journal
    • /
    • v.23 no.2
    • /
    • pp.101-111
    • /
    • 2013
  • Nano materials having large surface area, uniform dimensions or pores can be utilized in various membrane applications. Recently, many studies have been focused on the application of nano materials and nano technologies in membrane applications by the help of the discovery and development of nano technologies. in terms of mass transport channels or functional modification. However, there have been several technological limitations for commercialization. Nano materials and nano technologies can improve 1) permeability, selectivity, 2) mechanical, chemical, thermal stability or fouling tolerance of conventional membranes and even 3) introduce new functionalities such as specific affinity and reactivity.

Effects of surface modification of $Nafion^{(R)}$ Membrane on the Fuel Cell Performance

  • Prasanna, M.;Cho, E.A.;Ha, H.Y.;Hong, S.A.;Oh, I.H.
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2004.11a
    • /
    • pp.133-138
    • /
    • 2004
  • Proton exchange membrane fuel cell (PEMFC) is considered as a clean and efficient energy conversion det ice for mobile and stationary applications. Anions all the components of the PEMFC, the interface between the electrolyte ,and electrode catalyst plays an important role in determining tile cell performance since the electrochemical reactions take place at the interface in contact with tile reactant gases. Therefore, to increase the interface area and obtain a high-performance PEMFC, surface of the electrolyte membrane was roughened by Ar$^{+}$ beam bombardment. The results imply that by modifying surface of the electrolyte membrane, platinum loading can be reduced significantly without performance loss. To optimize the surface treatment condition, effects of ion dose density on characteristics of the membrane/electrode interface were examined by measuring the cell performance, impedance spectroscopy, and cyclic voltammograms. Surface of the modified membranes were characterized using scanning electron microscopy and FT-IR.R.

  • PDF

Sulfonated poly(arylene ether copolymer)-g-sulfonated Polystyrene Membrane Prepared Via E-beam Irradiation and Their Saline Water Electrolysis Application (전자빔조사를 이용한 술폰화 폴리아릴렌 에테르 술폰-g-술폰화 폴리스틸렌 분리막 제조 및 염수전기분해 특성평가)

  • Cha, Woo Ju;Lee, Chang Hyun
    • Membrane Journal
    • /
    • v.26 no.6
    • /
    • pp.458-462
    • /
    • 2016
  • Saline water electrolysis, known as chlor-alkali (CA) membrane process, is an electrochemical process to generate valued chemicals such as chlorine, hydrogen and sodium hydroxide with high purities higher than 99%, using an electrolytic cell composed of cation exchange membrane, anode and cathode. It is necessary to reduce energy consumption per a unit chemical production. This issue can be solved by decreasing intrinsic resistance of the membrane and the electrodes and/or by reducing their interfacial resistance. In this study, the electron radiation grafting of a $Na^+$ ion-selective polymer was conducted onto a hydrocarbon sulfonated ionomer membrane with high chemical resistance. This approach was effective in improving electrochemical efficiency via the synergistic effect of relatively fast $Na^+$ ion conduction and reduced interfacial resistance.

Reduction of Methanol Crossover in a Direct Methanol Fuel Cell by Using the Pt-Coated Electrolyte Membrane

  • Jung, Eun-Mi;Rhee, Young-Woo;Peck, Dong-Hyun;Lee, Byoung-Rok;Kim, Sang-Kyung;Jung, Doo-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • A Pt-layer was deposited on the anode side of a Nafion membrane via a sputtering method in order to reduce methanol crossover in a direct methanol fuel cell (DMFC). The methanol permeation and the proton conductivity through the modified membranes were investigated. The performances of the direct methanol fuel cell were also tested using single cells with a Nafion membrane and the modified membranes. The Pt-layers on the membrane blocked both methanol crossover and proton transport through the membranes. Methanol permeability and proton conductivity decreased with an increase of the platinum layer thickness. At methanol concentration of 2 M, the DMFC employing the modified membrane with a platinum layer of 66 nm-thickness showed similar performance to that of a DMFC with a bare Nafion membrane in spite of the lower proton conductivity of the former. The maximum power density of the cell using the modified membrane with a platinum layer of 66 nm-thickness increased slightly while that of the cell with the bare membrane decreased abruptly when a methanol solution of 6M was supplied.

Chemistry and Biology of Ras Farnesyltransferase

  • Cho, Kwang-Nym;Lee, Kee-In
    • Archives of Pharmacal Research
    • /
    • v.25 no.6
    • /
    • pp.759-769
    • /
    • 2002
  • Mutated forms of ras are found in many human tumors and the rate of incidence is significantly higher in colon and pancreatic cancers. The protein product from the ras oncogene is a small G-protein, $p21^{ras}{\;}(Ras)$ that is known to playa key role in the signal transduction cascade and cell differentiation and proliferation. Mutated Ras is unable to regulate itself and remains constantly activated, leading to uncontrolled cell growth. The function of Ras in signal transduction requires its location near the growth factor receptor at the cell membrane. However, Ras does not have a transmembrane domain. Ras requires farnesylation to increase its hydrophobicity and subsequent plasma membrane association for its transforming activity. This key post-translational modification is catalyzed by the enzyme Ras farnesyltransferase (FTase), which transfers a farnesyl group from farnesylpyrophosphate to the C-terminal cysteine of the Ras protein. The requirement has focused attention on FTase as a target for therapeutic intervention. Selective inhibition of FTase will prevent Ras protein from association with the plasma membrane, leading to a disruption of oncogenic Ras function.

An Application of PTA Method for the Endurance and Wear Surface Characteristics of Agricultural Implements (농업기계의 내마모 특성 개선을 위한 PTA 표면 개질법의 적용)

  • 김창수;최중섭
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.473-478
    • /
    • 1999
  • Recently, it is necessary fir surface materials to be low cost and to keep well endurable and wear in machinery field. Since most good materials with endurance and wear are expensive, they are being studied hard to modify to surface materials with endurance and wear, which overlay with the surface membrane completely. One of them is PTA(Plasma Transferred Arc Overlaying Process) method, which gets into the spotlight. It is thought to be an optimum method, since this method of overlays properly materials with about 3∼5cm surface membrane. It is necessity for the modified materials with endurance and wear to improve within the agricultural environment. Therefore, this research was used the PTA method to endure and wear a material. This method proved to be a reliable method for overlaying the membrane on the materials of an economical agricultural machinery.

  • PDF

The Correlation between Gas Transport Properties and Physical Properties of Modified Polysulfones (변형 폴리술폰의 기체 투과 성질과 물리적 성질의 상관관계)

  • ;;;;;Guiver, Michael D.;R
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.67-68
    • /
    • 1997
  • 1. Introduction : Gas transport through dense polymeric membranes is predominantly determined by the chain packing density as well as the chain flexibility. Thus, improved permeation properties can be obtained by controlling these two factors. In this work, the introduction of bulky substituents was attempted to improve permeation properties. Polysulfone, widely used material for gas separation membrane, was the starting material of this modification. Gas transport properties of resulting modified polysulfones were examined, and the improved properties were explained by probing the change of physical properties.

  • PDF