• Title/Summary/Keyword: membrane microarray

Search Result 36, Processing Time 0.268 seconds

Altered Gene Expression of Caspase-10, Death Receptor-3 and IGFBP-3 in Preeclamptic Placentas

  • Han, Jae Yoon;Kim, Yoon Sook;Cho, Gyeong Jae;Roh, Gu Seob;Kim, Hyun Joon;Choi, Won Jun;Paik, Won Young;Rho, Gyu Jin;Kang, Sang Soo;Choi, Wan Sung
    • Molecules and Cells
    • /
    • v.22 no.2
    • /
    • pp.168-174
    • /
    • 2006
  • Enhanced apoptosis has been observed in the placentas of women with preeclampsia, but few studies have examined changes at the molecular level. This study was designed to detect genes specifically expressed in full-term preeclamptic placentas. Tissue samples were collected immediately after cesarean delivery from 11 normal and 8 preeclamptic placentas at 35-40 weeks of gestation. Total RNAs were extracted and hybridized to a cDNA microarray. Results were confirmed by reverse-transcription polymerase chain reaction (RT-PCR), Western blotting and immunohistochemistry. Hematoxylin and eosin and TUNEL staining were also performed to confirm apoptosis in preeclamptic placentas. Among 205 genes, three were up- or downregulated in preeclamptic placentas. The expression of caspase-10 and death receptor 3 (DR-3) was significantly increased, whereas insulin-like growth factor binding protein-3 (IGFBP-3) was strongly downregulated. RT-PCR analysis and Western blotting confirmed these effects. Immunohistochemical analysis showed that the DR-3, caspase-10 and IGFBP-3 proteins were localized in the syncytial membrane. Apoptosis in the trophoblast was also increased in term placentas from women with pregnancies complicated by preeclampsia. These results suggest that caspase-10, DR-3 and IGFBP-3 are involved in apoptosis in the preeclamptic placenta.

The application of chitosan to dental medicine

  • Hayashi, Y.;Yamada, S.;Ohara, N.;Kim, S-K.;Ikeda, T.;Yanagiguchi, K.;Matsunaga, T.
    • Proceedings of the KACD Conference
    • /
    • 2003.11a
    • /
    • pp.545-545
    • /
    • 2003
  • Chitosan is applied as a dressing for oral mucous wound and a tampon following radical treatment of maxillary sinus. Furthermore, it is being investigated as an absorbing membrane for endodontic and periodontic surgeries. A few studies have reported osteoconduction and osteogenesia at the site of chitosan implant in vivo. However, compared with soft tissue healing processes, the mechanisms concerning effects of chitosan for biological mineralization have not yet been resoil In the present study, we studied the gene expression pattern using cDNA microarray and RT-PCR analyses in hard tissue forming osteoblasts cultured with water-soluble and low molecular weight chitooligosaccharide. cDNA microarray analysis revealed that 16 genes were expressed at 〉1.5-fold higher signal ratio levels in the experimental group compared with the control group after 3 days. RT-PCR analysis showed that chitosan oligomer induced an increase in the expression of two genes, CD56 antigen and tissue-type plasminogen activator. Furthermore, the expression of mRNAs for BMP-2 was almost identical in the experimental and control groups after 3 days of culture, but slightly increased after 7 days of culture with chitosan oligomer. These results suggest that a super-low concentration of chitooligosaccharide could modulate the activity of osteoblastic cells through mRNA levels and that the genes concerning cell proliferation and differentiation can be controlled by water-soluble chitosan.

  • PDF

LAMP-3 (Lysosome-Associated Membrane Protein 3) Promotes the Intracellular Proliferation of Salmonella typhimurium

  • Lee, Eun-Ju;Park, Kwan-Sik;Jeon, In-Sook;Cho, Jae-Woon;Lee, Sang-Jeon;Choy, Hyun E.;Song, Ki-Duk;Lee, Hak-Kyo;Choi, Joong-Kook
    • Molecules and Cells
    • /
    • v.39 no.7
    • /
    • pp.566-572
    • /
    • 2016
  • Lysosomes are cellular organelles containing diverse classes of catabolic enzymes that are implicated in diverse cellular processes including phagocytosis, autophagy, lipid transport, and aging. Lysosome-associated membrane proteins (LAMP-1 and LAMP-2) are major glycoproteins important for maintaining lysosomal integrity, pH, and catabolism. LAMP-1 and LAMP-2 are constitutively expressed in Salmonella-infected cells and are recruited to Salmonella-containing vacuoles (SCVs) as well as Salmonella- induced filaments (Sifs) that promote the survival and proliferation of the Salmonella. LAMP-3, also known as DC-LAMP/CD208, is a member of the LAMP family of proteins, but its role during Salmonella infection remains unclear. DNA microarray analysis identified LAMP-3 as one of the genes responding to LPS stimulation in THP-1 macrophage cells. Subsequent analyses reveal that LPS and Salmonella induced the expression of LAMP-3 at both the transcriptional and translational levels. Confocal Super resolution N-SIM imaging revealed that LAMP-3, like LAMP-2, shifts its localization from the cell surface to alongside Salmonella. Knockdown of LAMP-3 by specific siRNAs decreased the number of Salmonella recovered from the infected cells. Therefore, we conclude that LAMP-3 is induced by Salmonella infection and recruited to the Salmonella pathogen for intracellular proliferation.

Effects of Salviae miltiorrhizae Radix Extract on Gene Expression of Dendritic cells. (단삼이 수지상 세포의 유전자 발현에 미치는 영향)

  • Chiang, Wen-Lih;Kim, Jong-Han;Choi, Jeong-Hwa;Park, Su-Yeon
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.21 no.3
    • /
    • pp.52-68
    • /
    • 2008
  • Objectives and Methods : Salviae miltiorrhizae Radix (SMR) promotes blood circulation to remove blood stasis, cools the blood to relieve carbuncle, clears away heat from the heart and tranquilizes the mind. This study was designed to investigate the effects of SMR on immuno-potentiative action in terms of changes in the genetic profile of dendritic cells (DC) using by microarray analysis. Results and Conclusion: In this experiment, treatments with more than 250 ${\mu}g/ml$ upto 1000 ${\mu}g/ml$ of SMR elevated the proliferation rates of DC. Microscopic observations confirmed the tendency on proliferation rates. Expression levels of genes related with cellular methabolic process, cell communication, and macromolecule metabolic process were elevated by treatment with SMR in comparison of functional distribution in a Biological Process. In molecular functions, expression levels of genes related with receptor activation, nucleotide binding and nucleic acid binding were elevated. In cellular components, expression levels of genes related to cellular membrane-bound organelles were elevated. In addition, expression levels of genes related to Wnt signalling pathways and the glycerophospholipid metabolism were elevated through analysis using pathway analysis between up-and down-regulated genes in cells treated with SMR. Finally, genes related to JAK2, GRB2, CDC42, SMAD4, B2M, FOS and ESRI located the center of Protein interaction network of genes through treatment with SMR.

  • PDF

Hepatic Gene Expression Analysis of 1, 1-Dichloroethylene Treated Mice

  • Yoon, Seok-Joo;Oh, Jung-Hwa;Park, Han-Jin;Kim, Yong-Bum
    • Molecular & Cellular Toxicology
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2007
  • 1, 1-dichloroethylene (DCE) is well known hepatotoxicant as a model acute hepatotoxicity and selectively injure the bile canalicular membrane of centrilobular hepatocytes. In this study, we investigated hepatic gene expression and histopathological changes in response to DCE treatment. DCE was administered once daily at 20 mg/kg up to 14 days via intraperitoneal injection. Five mice were used in each test group and were sacrificed at 1, 7, and 14 days. Serum biochemical and histopathological analysis were performed for evaluation of hepatotoxicity level. Direct bilirubin and total bilirubin activities were slightly elevated in treated group at 7 days. DCE treatment for 7 days resulted in centrilobular hepatocyte hypertrophy and hepatocyte vacuolation, and mild hepatocyte vacuolation and high hepatocyte basophilia were observed in 14 days treated group. One hundred twenty three up-regulated genes and 445 down-regulated genes with over 2-fold changes between treated and control group at each time point were used for pathway analysis. These data may contribute in understanding the molecular mechanism DCE-induced hepatotoxicity.

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF

Activated Leukocyte Cell Adhesion Molecule: Expression in the Uterine Endometrium during the Estrous Cycle and Pregnancy in Pigs

  • Kim, Min-Goo;Shim, Jang-Soo;Seo, Hee-Won;Choi, Yo-Han;Lee, Chang-Kyu;Ka, Hak-Hyun
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.24 no.7
    • /
    • pp.919-928
    • /
    • 2011
  • The pig exhibits true epitheliochorial placentation, where the fetal membrane maintains attachment throughout pregnancy but does not invade into the maternal uterine endometrium. Accordingly, the expression and function of cell adhesion molecules are very important for embryo implantation and the establishment of pregnancy. In our recent microarray analysis, we found that activated leukocyte cell adhesion molecule (ALCAM) was expressed in the uterine endometrium during pregnancy in pigs. To better understand the roles of ALCAM in the establishment and maintenance of pregnancy, we examined ALCAM expression in the uterine endometrium during the estrous cycle and pregnancy in pigs. Real-time RT-PCR analysis showed that ALCAM was differentially expressed in the uterine endometrium during the estrous cycle and pregnancy, with the highest levels on D12 of pregnancy. ALCAM mRNA was localized to the luminal and glandular epithelial cells and to the trophectoderm of conceptuses during early pregnancy. The steroid hormones estrogen and progesterone had no effect on ALCAM expression in an endometrial explant culture study. Further, we found that ALCAM expression in the uterine endometrium from gilts with somatic cell nuclear transfer-derived embryos was not different from that in gilts with embryos from natural mating. ALCAM was expressed in a pregnancy stage- and cell type-specific manner in the uterine endometrium and conceptuses during pregnancy. These findings suggest that ALCAM may play a role in the establishment of pregnancy. Further analysis of ALCAM will provide insight into the implantation process and establishment of pregnancy in pigs.

Genome-Wide Response of Deinococcus radiodurans on Cadmium Toxicity

  • Joe, Min-Ho;Jung, Sun-Wook;Im, Seong-Hun;Lim, Sang-Yong;Song, Hyun-Pa;Kwon, Oh-Suk;Kim, Dong-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.438-447
    • /
    • 2011
  • Deinococcus radiodurans is extremely resistant to various genotoxic conditions and chemicals. In this study, we characterized the effect of a sublethal concentration (100 ${\mu}M$) of cadmium (Cd) on D. radiodurans using a whole-genome DNA microarray. Time-course global gene expression profiling showed that 1,505 genes out of 3,116 total ORFs were differentially expressed more than 2-fold in response to Cd treatment for at least one timepoint. The majority of the upregulated genes are related to iron uptake, cysteine biosynthesis, protein disulfide stress, and various types of DNA repair systems. The enhanced upregulation of genes involved in cysteine biosynthesis and disulfide stress indicate that Cd has a high affinity for sulfur compounds. Provocation of iron deficiency and growth resumption of Cd-treated cells by iron supplementation also indicates that CdS forms in iron-sulfur-containing proteins such as the [Fe-S] cluster. Induction of base excision, mismatch, and recombinational repair systems indicates that various types of DNA damage, especially base excision, were enhanced by Cd. Exposure to sublethal Cd stress reduces the growth rate, and many of the downregulated genes are related to cell growth, including biosynthesis of cell membrane, translation, and transcription. The differential expression of 52 regulatory genes suggests a dynamic operation of complex regulatory networks by Cd-induced stress. These results demonstrate the effect of Cd exposure on D. radiodurans and how the related genes are expressed by this stress.

The Anti-proliferative Gene TIS21 Is Involved in Osteoclast Differentiation

  • Lee, Soo-Woong;Kwak, Han-Bok;Lee, Hong-Chan;Lee, Seung-Ku;Kim, Hong-Hee;Lee, Zang-Hee
    • BMB Reports
    • /
    • v.35 no.6
    • /
    • pp.609-614
    • /
    • 2002
  • The remodeling process of bone is accompanied by complex changes in the expression levels of various genes. Several approaches have been employed to detect differentially-expressed genes in regard to osteoclast differentiation. In order to identify the genes that are involved in osteoclast differentiation, we used a cDNA-array-nylon membrane. Among 1,200 genes that showed ameasurable signal, 19 genes were chosen for further study. Eleven genes were up-regulated; eight genes were down-regulated. TIS21 was one of the up-regulated genes which were highly expressed in mature osteoclasts. To verify the cDNA microarray results, we carried out RT-PCR and real-time RT-PCR for the TIS21 gene. The TIS21 mRNA level was higher in differentiated-osteoclasts when compared to undifferentiated bone-marrow macrophages. Furthermore, the treatment with $1\;{\mu}M$ of a TIS21 antisense oligonucleotide reduced the formation of osteoclasts from the bone-marrow-precursor cells by ~30%. These results provide evidence for the potential role of TIS21 in the differentiation of osteoclasts.

A Putative Early Response of Antifungal Bacillus lentimorbus WJ5 Against the Plant Pathogenic Fungus, Colletotrichum gloeosporioides, Analyzed by a DNA Microarray

  • Lee Young-Keun;Jang Yu-Sin;Chang Hwa-Hyoung;Hyung Seok Won;Chung Hye-Young
    • Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.308-312
    • /
    • 2005
  • The global RNA transcription profiles of Bacillus lentimorbus WJ5 under an in vitro co-culture with Colletotrichum gloeosporioides were analyzed in order to study the antagonistic bacteria-fungi interactions. Using a filter membrane system, B. lentimorhus WJ5 was exposed to the spores of C. gloeosporioides at the late exponential stage. The transcription profiles of the B. lentimorhus WJ5, both with and without a challenge from C. gloeosporioides, were analyzed using custom DNA chips containing 2,000 genome fragments. A total of 337 genes were expressed, with 87 and 47 up- and down-regulated, respectively. Of these, 12 genes, which were involved in central carbon metabolisms, and 7 from minor catabolism were relatively highly up-regulated (> 10 fold) and down-regulated (< 0.2 fold), respectively. Nine genes, which were thought to be related to the antifungal activity, were also up-regulated, but their levels were not so high (2.0 - 9.7 folds). From the results, during the early stage of the co-culture of B. lentimorbus WJ5 and C. gloeosporioides, nutrient competition seemed to occur; therefore, the genes from central carbon metabolisms could be up-regulated, while those from minor catabolism could be down-regulated.