• Title/Summary/Keyword: membrane fatty acid

Search Result 196, Processing Time 0.023 seconds

Effects of Dietary Fatty Acid Status of Korean Adult on RBC Membrane Fatty Acid and Calcium Metabolism with Age (노화에 따른 한국성인의 혈구막 지방산과 칼슘대사 변화에 식이지방산이 미치는 영향)

  • 이혜양
    • Journal of Nutrition and Health
    • /
    • v.27 no.1
    • /
    • pp.46-52
    • /
    • 1994
  • Recently it is reported that RBC membrane fluidity decreases and RBC calcium levels increase with age. The aim of this study was to analyze changes in lipid and calcium metabolism with age, and to seek relationship of diet and metabolism. With clinically normal Korean adults(male 60, female 63), this study was carried out in three phases : 1) to analyze fatty acid percentage of RBC membrane, 2) to analyze calcium levels of RBC with age, and 3) to compare the effects of dietary fatty acid intake on blood fatty acid profiles. The results are as follows : The P/S ratio of RBC membrane fatty acid decreased with age. The RBC calcium content increased according to age, with women having a higher level than men. The higher intake groups of linolenic acid(C18:3) has statistically higher serum linolenic acid levels. But dietary effects of membrane fatty acid were not found. Therefore, the further research to seek the possible relationship of diet and membrane fatty acid should be continued.

  • PDF

Stabilization of photosynthetic machinery against low-temperature photoinhibition by fatty acid unsaturation of membrane lipids in plants

  • Moon, Byoung-Yong
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1999.08a
    • /
    • pp.68-82
    • /
    • 1999
  • CHilling tolereance of plants are closely correlated with the degree of fatty acid unsaturation of membrane lipids. We studied the effects of low-temperature photoinhibition on the photochemical efficiency of photosystem II in terms of fatty acid unsaturation of thylakoid membranes lipids isolated from chilling -sensitive plants and chilling -resistant ones. To directly test the chilling tolerance of photosynthetic machinery in relation to membrane lipids, we further compared wild type tobacco plants with that of transgenic tobacco plants, in which the sensitivity to chilling had been enhanced by genetic modification of fatty acid unsaturation of chloroplast membrane lipids. The transgenic tobacco plants were found to contain reduced levels of unsaturated membrane fatty acids after being transformed with cDNA for glycerol-3-phophate acyltransferase from squash. The functional integrity of photosystem II during and recovery of photosynthesis from low-temperature photoinhibition will be discussed in connection with the degree of fatty acid unsaturation of chlorophast membranes lipids.

  • PDF

The Role of Membranes and Intracellular Binding Proteins in Cytoplasmic Transport of Hydrophobic Molecules : Fatty Acid Binding Proteins and Long Chain Fatty Acids (세포내 소수성 물질 이동에서 막과 세포내 결합단백질의 역살 : 지방산 결합 단밸직과 장쇄 지방산)

  • 김혜경
    • Journal of Nutrition and Health
    • /
    • v.30 no.6
    • /
    • pp.658-668
    • /
    • 1997
  • Path of a small hydrophobic molecule through the aqueous cytoplasma is not linear. Partition may favor membrane binding by several orders of magnitude : thus significant membrane association will markedly decrease the cytosolic transport rate. The presence of high concentration of soluble binding proteins for these hydrophobic molecules would compete with membrane association and thereby increase transport rate. For long chain fatty acid molecules, a family of cytosolic binding proteins collectively known as the fatty acid binding proteins(FABP), are thought to act as intracellular transport proteins. This paper examines the mechanism of transfer of fluorescent antyroyloxy-labeled fatty acids(AOFA) from purified FABPs to phosholipid membranes. With the exception of the liver FABP, AOFA is transferred from FABP by collisional interaction of the protein with a acceptor membrane. The rate of transfer increased markedly when membranes contain anionic phospholipids. This suggests that positively charged residues on the surface of the FABP may interact with the membranes. Neutralization of the surface lysine residues of adipocyte FABP decreased fatty acid transfer rate, and transfer was found to proceed via aqueous diffusion rather than collisional interaction. Site specific mutagenesis has further shown that the helix-turn-helix domain of the FABP is critical for interaction with anionic acceptor membranes. Thus cytosolic FABP may function in intracellular transport of fatty acid to decrease their membranes association as well as to target fatty acid to specific subcellular sites of utilization.

  • PDF

Acid Response of Bifidobacterium longum subsp. longum BBMN68 Is Accompanied by Modification of the Cell Membrane Fatty Acid Composition

  • Liu, Songling;Ren, Fazheng;Jiang, Jingli;Zhao, Liang
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1190-1197
    • /
    • 2016
  • The acid response of Bifidobacterium longum subsp. longum BBMN68 has been studied in our previous study. The fab gene, which is supposed to be involved in membrane fatty acid biosynthesis, was demonstrated to be induced in acid response. In order to investigate the relationship between acid response and cell membrane fatty acid composition, the acid adaptation of BBMN68 was assessed and the membrane fatty acid composition at different adaptation conditions was identified. Indeed, the fatty acid composition was influenced by acid adaptation. Our results showed that the effective acid adaptations were accompanied with decrease in the unsaturated to saturated fatty acids ratio (UFA/SFA) and increase in cyclopropane fatty acid (CFA) content, which corresponded to previous studies. Moreover, both effective and non-effective acid adaptation conditions resulted in decrease in the C18:1 cis-9/C18:1 trans-9 ratio, indicating that the C18:1 cis-9/C18:1 trans-9 ratio is associated with acid tolerance response but not with acid adaptation response. Taken together, this study indicated that the UFA/SFA and CFA content of BBMN68 were involved in acid adaptation and the C18:1 cis-9/C18:1 trans-9 ratio was involved in acid tolerance response.

Antifungal Activity of Medium-chain Saturated Fatty Acids and Their Inhibitory Activity to the Plasma Membrane H+-ATPase of Fungi (중급 지방산 항진균 활성과 진균의 Plasma membrane H+-ATPase에 대한 저해작용)

  • 이상화;김창진
    • Microbiology and Biotechnology Letters
    • /
    • v.27 no.5
    • /
    • pp.354-358
    • /
    • 1999
  • In order to know the antifungal characteristics of saturated fatty acids having 6 to 12 carbons, their minimum inhibitory concentrations (MICs) and minimum fungicidal concentrations (MFCs) were estimated against Saccharomyces cerevisiae. Fatty acids from C6 to C11 exhibited increasing activity with chain length, but C12 fatty acid did not show activity at all. In relation to antifungal modes of actions, fatty acids investigated showed on inhibitory activity toward the plasma membrane H+-ATPase of Saccharomyces cerevisiae. Their inhibitions to the glucose-induced acidification and ATP hydrolysis caused by the proton pump were found to be in common wiht antifungal activities. At the test concentration of 1mM, hexanoic acid (C6) showed the lowest inhibition of about 30%, while undecanoic acid(C11) showed the strongest inhibition of over 90%. In addition, as seen with antifungal activity, the inhibitory activity of dodecanoic acid (C12) was suddenly reduced to less than 50%.

  • PDF

Membrane Lipids of a Marine Ciliate Protozoan Uronema marinum

  • Seo Jung Soo;Kim Ki Hong;Lee Hyung Ho;Chung Joon Ki
    • Fisheries and Aquatic Sciences
    • /
    • v.6 no.3
    • /
    • pp.155-159
    • /
    • 2003
  • Lipid composition and fatty acid composition were characterized in the membrane of a marine ciliate protozoan (Uronema marinum). Phospholipids accounted for 70% of total lipid, and the remainder was neutral lipids. Total phospholipids were separated as phosphatidylcholine $(24.26\%)$, phosphatidylethanolamine $(22.21\%)$, phosphatidylinositol $(6.14\%)$, phosphatidyl­serne $(5.11\%)$, cardiolipin $(3.07\%)$ and unidentified phospholipids $(28.72\%)$ through high performance liquid chromatography (HPLC). Fatty acid composition of neutral lipids and phospholipids was determined by gas chromatography (GC), based solely on comparision of retention times. In neutral lipids, the most abundant fatty acid group was monounsaturated fatty acid $(48.3\% of total fatty acids)$ with oleic acid (18:1) and nervonic acid (24:1). Saturated fatty acids comprised $29.6\%$ of total fatty acids, with palmitic acid (16:0), stearic acid (18:0) ane myristic acid (14:0), and polyunsaturated fatty acid accounted for $33.0\%$ with $Di-homo-\gamma-linolenic$ acid (20:3) and linoleic acid (18:2). Wherease phospholipids predominantly contained the fatty acid group in the following order: polyunsaturated fatty acids $(52.7\%\;of\;total\;fatty\;acids)$ with linoleic acid (18:2) and $\gamma-linolenic$ acid (18:3) > monounsaturated fatty acids $(28.5\%\;of\;total\;fatty\;acids)$ with oleic acid (18:1) and palmitoleic acid (16:1) > saturated fatty acids $(25.5\%\;of\;total\;fatty\;acids)$ with palmitic acid (16:0), stearic acid (18:0) and myristic acid (14:0).

The Effects of Surfactants on the Biosynthesis of Galactolipid and the Composition of Fatty Acids in Chloroplast Envelope rind Thylakoid Membrane of Chlorella ellipsoidea

  • Choe, Eun-A;Cheong, Gyeong-Suk;Lee, Cheong-Sam
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.341-349
    • /
    • 1998
  • To analyze the effects of surfactants on the biosynthesis of galactolipid and the composition of fatty acids, the chloroplast envelope and thylakoid membrane were cultivated in medium treated with anionic surfactants, such as linear alkylbenzene sulfonate (0.002%, LAS), a-olefin sulfonate (O.01%, AOS), and sodium lauryl ether sulfate (0.08%, SLES), respectively. During the cultivation, the chloroplast envelope and thylakoid membrane were isolated from the cells collected at the early and middle phase of the culture and the contents of their fatty acid composition were compared with the control. When treated with surfactants, the contents of total lipid MDGD methylesters, and DGDG methylesters decreased significantly when compared with the control. It was also confirmed that more unsaturated fatty acids were involved in the biosynthesis of galactolipid. The fatty acids utilized in the biosynthesis of MGDG were in the chloroplast envelope and in the control, and linoleic acid in LAS, linolenic acid and oleic acid in AOS, and linolenic acid and oleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control linolenic acid and stearic acid in LAS, oleic acid and linolenic acid in AOS, oleic acid and linolenic acid in SLES. In the thylakoid membrane, the major fatty acids in the biosynthesis of MGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, linolenic acid and palmitoleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, palmitoleic acid and oleic acid in SLES.

  • PDF

Therapeutic Potential of Membrane Fatty Acid Modifiaction in Tumor Cells

  • Shon, Yun-Hee;Park, Kun-Young;Kim, Kwang-Soo
    • Preventive Nutrition and Food Science
    • /
    • v.1 no.1
    • /
    • pp.143-150
    • /
    • 1996
  • The membrane fatty acid composition of tumor cell can be modified either in cell by altering the lipid composition of the medium of during growth in animals by changing the dietaty fat composition. These modifications are associated with changes in membrane physical properties and certain cellular functions, including carrier-mediated transport and enzyme contained within the membrane. Such effects influence the transport of nutrients and chemotherapeutic agents in cancer cells .Fatty acid modification also can enhance the sensitivity of the neoplastic cell to chemotherapy. The alteration in plasma membrane composition will be affected through dietary supplementations and the potential value to cancer patients could be a better understanding of the effects of diet on responsiveness of neoplasms to chemotherapy, i.e. cancer patients' chances for a "cure" can be improved by diet changes prior to treatment.

  • PDF

Effect of Fatty Acid on the Membrane Fluidity of Liposomes (지방산 첨가가 리포좀 유동성에 미치는 영향에 관한 연구)

  • Lee, JinSun;Chi, Gyeong-Yup;Lim, JongChoo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2017
  • In the present work, the interaction of fatty acid with vesicle membrane of phospholipids was investigated using 3 different kinds of fatty acids such as stearic acid (SA), oleic acid (OA) and linoleic acid (LA). Basically, the same trend has been found in 3 fatty acid systems. The addition of fatty acid produced a close packing of liposome due to the penetration of fatty acid molecules into liposome vesicles, which resulted in a decrease in size and an increase in zeta potential of liposome. However, excessive addition of fatty acid produced a transition from liposomes to aggregates of lipid particles having polymorphic structure. The membrane fluidity, characterized by measuring membrane deformability and fluorescence anisotropy ratio of liposomes, was in good agreement with measurement results of transmission electron microscopy (TEM) and particle size. The minimum size and closest packing of liposome with SA, OA and LA were found when the molar ratios of fatty acid to lecithin were 0.70, 0.50, and 0.25 respectively.

Application of Anaerobic Membrane-Fermenter for the Recovery of Volatile Fatty Acids from Organic Liquid Sludge (유기성 액상 슬러지로부터 휘발성 지방산의 회수를 위한 혐기성 막-발효기의 적용)

  • 김종오;정종태
    • Membrane Journal
    • /
    • v.14 no.1
    • /
    • pp.37-43
    • /
    • 2004
  • As the experimental results of membrane application for the production and recovery of volatile fatty acids, suspended solids concentration, the number of acid producing bacteria and organic acid concentration increased with membrane coupling in the fermenter. The application of membrane for the efficiency increase of solid-liquid separation and fermentation made the number of acid producing bacteria increase in the fermenter, thus acid forming rate showed higher value than that of membrane-free fermenter. Membrane-coupled fermenter was believed to be an effective technology for the improvement of recovery efficiency of volatile fatty acids from organic sludge.