Browse > Article
http://dx.doi.org/10.5657/fas.2003.6.3.155

Membrane Lipids of a Marine Ciliate Protozoan Uronema marinum  

Seo Jung Soo (Department of Aquatic Life Medicine, Pukyong National University)
Kim Ki Hong (Department of Aquatic Life Medicine, Pukyong National University)
Lee Hyung Ho (Faculty of Food Science and Biotechnology, Pukyong National University)
Chung Joon Ki (Department of Aquatic Life Medicine, Pukyong National University)
Publication Information
Fisheries and Aquatic Sciences / v.6, no.3, 2003 , pp. 155-159 More about this Journal
Abstract
Lipid composition and fatty acid composition were characterized in the membrane of a marine ciliate protozoan (Uronema marinum). Phospholipids accounted for 70% of total lipid, and the remainder was neutral lipids. Total phospholipids were separated as phosphatidylcholine $(24.26\%)$, phosphatidylethanolamine $(22.21\%)$, phosphatidylinositol $(6.14\%)$, phosphatidyl­serne $(5.11\%)$, cardiolipin $(3.07\%)$ and unidentified phospholipids $(28.72\%)$ through high performance liquid chromatography (HPLC). Fatty acid composition of neutral lipids and phospholipids was determined by gas chromatography (GC), based solely on comparision of retention times. In neutral lipids, the most abundant fatty acid group was monounsaturated fatty acid $(48.3\% of total fatty acids)$ with oleic acid (18:1) and nervonic acid (24:1). Saturated fatty acids comprised $29.6\%$ of total fatty acids, with palmitic acid (16:0), stearic acid (18:0) ane myristic acid (14:0), and polyunsaturated fatty acid accounted for $33.0\%$ with $Di-homo-\gamma-linolenic$ acid (20:3) and linoleic acid (18:2). Wherease phospholipids predominantly contained the fatty acid group in the following order: polyunsaturated fatty acids $(52.7\%\;of\;total\;fatty\;acids)$ with linoleic acid (18:2) and $\gamma-linolenic$ acid (18:3) > monounsaturated fatty acids $(28.5\%\;of\;total\;fatty\;acids)$ with oleic acid (18:1) and palmitoleic acid (16:1) > saturated fatty acids $(25.5\%\;of\;total\;fatty\;acids)$ with palmitic acid (16:0), stearic acid (18:0) and myristic acid (14:0).
Keywords
Scuticociliate; Uronema marinum; Membrane phospholipid; Fatty acid;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sul, D. and lA. Erwin. 1997. The membrane lipids of the marine ciliated protozoan Parauronema acutum. Biochim. Biophys. Acta, 1345, 162-171   DOI   ScienceOn
2 Valtersson, C. and G. Dallner. 1982. Compartmentalization of phosphatidylethanolamine in microsomal membranes from rat liver. J. Lipid Res., 23, 868-875
3 Yoshinaga, T. and J. Nakazoe. 1993. Isolation and in vitro cultivation of an unidentified ciliate causing scuticociliatosis in Japanese flounder, Paralichthys olivaceus. Gyobyo Kenkyu, 28, 131-134   DOI
4 Zidovetzki R. and I.W. Sherman. 1991. Lipid composition of the membranes of malaria-infected erythrocytes and the role of drug-lipid interactions in the mechanism of action of chloroquine and other antimalarials. In: Coombs G, North M, eds. Biochemical Protozoology. Taylor and Francis, London, pp. 8-99
5 Horwitz, J. and R.L. Perlman. 1987. Phospholipid metabolism in PC12 pheochromocytoma cells. Meth. Enzymol., 141, 169-175   DOI
6 Jee, B.Y., Y.C. Kim and M.S. Park. 2001. Morphology and biology of parasite responsible for scuticociliatosis of cultured olive flounder Paralichtys olivaceus. Dis. Aquat. Org., 47, 49-55   DOI   ScienceOn
7 Jonaha, M. and J.A. Erwin. 1971. The lipids of membraneous cell organelles isolated from the ciliate, Tetrahymena pyriformis. Biochim. Biophys. Acta, 231, 80l-92   DOI   ScienceOn
8 Kates M. and B.E. Volcani. 1966. Lipid components of diatoms. Biochim. Biophys. Acta. 4, 116, 264-278
9 Kwon, S.R.. J.K. Chung, H.H. Lee and K.H. Kim. 2002. Effects of oxytetracycline treatments on the infection potential of scuticociliates in cultured olive flounder, Paralichthys olivaceus. J. Fish. Sci. Tech., 5, 1-4
10 Novotny, M.J., R.J. Cawthorn and B. Despres. 1996. In vitro effects of chemotherapeutants on the lobster parasite Anophryoides haemophila. Dis. Aquat. Org., 24, 233-237   DOI
11 Parrish, C.C., A.S.W. DeFreitas, G. Bodennec, E.J. Macpherson and R.G. Ackman. 1991. Lipid composi-tion of the toxic marine diatom, Nitzschia pungens. Phytochemistry 30, 113-116   DOI   ScienceOn
12 Rhoads, D.E and E.S. Kaneshiro. 1979. Characterizations of phospholipids from Paramecium tetraurelia cells and cilia. J. Protozool., 26, 329-338   DOI   ScienceOn
13 Soderberg, M., C. Edlund, I. Alafuzoff, K. Kristensson and G. Dallner. 1992. Lipid composition in different regions of the brain in Alzheimer's disease/senile dementia of Alzheimer's type. J. Neurochern., 59. 1646-1653   DOI   ScienceOn
14 Florin-Christensen, J., C.E. Suarez, M. Florin-Christensen, S.A. Hines, T.F. McElwain and G.H. Palmer. 2000. Phosphatidylcholine formation is the predominant lipid biosynthetic event in the hemoparasite Babesia bovis. Mol. Biochem. Parasitol., 106, 147-156   DOI   ScienceOn
15 Berger, H., P. Johns and DJ. Hanahan. 1972. Structural studies on lipids of Tetrahymena pyriformis. Biochim. Biophys. Acta, 260, 617-629   DOI   ScienceOn
16 Bordmann G, W. Rudin and N. Favre. 1998. Immnuization of mice with phosphatidylcholine drastically reduced the parasitaema of subsequent Plamodium cabaudi chabaudi blood-stage infections. Immunol., 94, 35-40   DOI   ScienceOn
17 Cribb, A.E., R.J. Despres and T. Cawthorn. 1999. Tetrazolium-based cytotoxicityassay to determine anti-protozoal activity against the scuticociliate Anohryoides haemopholia. Dis. Aquat. Org., 35, 213-219   DOI
18 Guan, Z., J. Grunler, S. Piao and P.J. Sindelar. 2001. Separation and quantitation of phospholipids and their ether analogues by high-performance liquid chroma-tography. Anal. Biochem., 297, 137-143   DOI   ScienceOn
19 Harrington, G.W., D.H. Beach, J.E. Dunham and G.G. Holz, Jr. 1970. The polyunsaturated fatty acids of marine dinoflagellates. J. Protozool., 17, 213-219   DOI   ScienceOn