Browse > Article
http://dx.doi.org/10.14478/ace.2016.1124

Effect of Fatty Acid on the Membrane Fluidity of Liposomes  

Lee, JinSun (Dept. of Chemical and Biochemical Eng., Dongguk Univ.-Seoul)
Chi, Gyeong-Yup (Daegu Hanny University)
Lim, JongChoo (Dept. of Chemical and Biochemical Eng., Dongguk Univ.-Seoul)
Publication Information
Applied Chemistry for Engineering / v.28, no.2, 2017 , pp. 177-185 More about this Journal
Abstract
In the present work, the interaction of fatty acid with vesicle membrane of phospholipids was investigated using 3 different kinds of fatty acids such as stearic acid (SA), oleic acid (OA) and linoleic acid (LA). Basically, the same trend has been found in 3 fatty acid systems. The addition of fatty acid produced a close packing of liposome due to the penetration of fatty acid molecules into liposome vesicles, which resulted in a decrease in size and an increase in zeta potential of liposome. However, excessive addition of fatty acid produced a transition from liposomes to aggregates of lipid particles having polymorphic structure. The membrane fluidity, characterized by measuring membrane deformability and fluorescence anisotropy ratio of liposomes, was in good agreement with measurement results of transmission electron microscopy (TEM) and particle size. The minimum size and closest packing of liposome with SA, OA and LA were found when the molar ratios of fatty acid to lecithin were 0.70, 0.50, and 0.25 respectively.
Keywords
liposome; fatty acid; packing; fluidity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Garg and S. Singh, Enhancement in antifungal activity of eugenol in immunosuppressed rats through lipid nanocarriers, Colloid Surf. B, 87, 280-288 (2011).   DOI
2 B. A. I. van den Bergh, P. W. Wertz, H. E. Junginer, and J. A. Bouwstra, Elasticity of vesicles assessed by electron spin resonance, electron microscopy and extrusion measurements, Int. J. Pharm., 217, 13-24 (2001).   DOI
3 S. H. Park, S. G. Oh, K. D. Suh. Han, D. J. Chung, J. Y. Mun, S. S. Han, and J. W. Kim, Control over micro-fluidity of liposomal membranes by hybridizing metal nanoparticles, Colloids Surf. B, 70, 108-113 (2009).   DOI
4 D. Yang, D. Pornpattananangkul, T. Nakatsuji, M. Chan, D. Carson, C. M. Huang, and L. Zhang, The antimicrobial activity of liposomal lauric acids against Propionibacterium acnes, Biomaterials, 30, 6035-6040 (2009).   DOI
5 C. K. Haluska, K. A. Riske, V. Marchi-Artzner, J. M. Lehn, R. Lipowsky, and R. Dimova, Time scales of membrane fusion revealed by direct imaging of vesicle fusion with high temporal resolution, Proc. Natl. Acad. Sci. USA, 103, 15841-15486 (2006).   DOI
6 L. Zhang and S. Granick, How to stabilize phospholipid liposomes (using nanoparticles), Nano Lett., 6, 694-698 (2006).   DOI
7 J. Marcelino, J. L. F. C. Lima, S. Reis, and C. Matos, Assessing the effects of surfactants on the physical properties of liposome membranes, Chem. Phys. Lipids, 146, 94-103 (2007).   DOI
8 Y. F. Hsieu, T. L. Chen, Y. T. Wang, J. H. Chang, and H. M. Chang, Properties of liposomes prepared with various lipids, J. Food Sci., 67, 2808-2813 (2001).
9 T. Inoue, S. I. Yanigihara, Y. Misono, and M. Suzuki, Effect of fatty acids on phase behavior of hydrated dipalmitoylphosphatidylcholine bilayer: Saturated versus unsaturated fatty acids, Chem. Phys. Lipids, 109, 117-133 (2001).   DOI
10 D. M. Small, Potpourri: Effects of unsaturation on lipid structure; plasma cholesterol ester and lipid-transfer proteins; and cholesterol- sensing proteins and cellular cholesterol movement, Curr. Opin. Struct. Biol., 8, 413-416 (1998).   DOI
11 J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, NewYork (2006).
12 K. Murzyn, T. Rog, G. Jezierski, Y. Takaoka, and M. Pasenkiewicz-Gierula, Effects of phospholipid unsaturation on the membrane/water interface: A molecular simulation study, Biophys. J., 81, 170-183 (2001).   DOI
13 T. Rog, K. Murzyn, R. Gurbiel, Y. Takaoka, A. Kusumi, and M. Pasenkiewicz-Gierula, Effects of phospholipid unsaturation on the bilayer nonpolar region: A molecular simulation study, J. Lipid Res., 45, 326-336 (2004).   DOI
14 C. Roach, S. E. Feller, J. A. Ward, and S. R. Shaikh, Comparison of cis and trans fatty acid containing phosphatidylcholines on membrane properties, Biochemistry, 43, 6344-6351 (2004).   DOI
15 J. Marcelino, J. L. F. C. Lima, S. Reis, and C. Matos, Assessing the effects of surfactants on the physical properties of liposome membranes, Chem. Phys. Lipids, 146, 94-103 (2007).   DOI
16 T. Inoue, K. Miyakawa, and R. Shimozawa, Interaction of surfactants with vesicle membrane of dipalmitoylphosphatidylcholine. Effect on gel-to-liquid-crystalline phase transition of lipid bilayer, Chem. Phys. Lipids, 42, 261-270 (1986).   DOI
17 T. Inoue, T. Iwanaga, K. Fukushima, R. Shimozawa, and Y. Suezaki, Interaction of surfactants with bilayer of negatively charged lipid: Effect on gel-to-liquid crystalline phase transition of dilauroylphosphatidic acid vesicle membrane, Chem. Phys. Lipids, 48, 189-196 (1988).   DOI
18 S. E. Schullery, T. A. Seder, D. A. Weinstein, and D. A. Bryant, Differential thermal analysis of dipalmitoylphosphatidylcholine-fatty acid mixtures, Biochemistry, 20, 6818-6824 (1981).   DOI
19 S. Mabrey and J. M. Sturtevant, Investigation of phase transitions of lipids and lipid mixtures by sensitivity differential scanning calorimetry, Proc. Natl. Acad. Sci. USA, 73, 3862-3866 (1976).   DOI
20 Z. Huang and R. M. Epand, Study of the phase behaviour of fully hydrated saturated diacyl phosphatidylserine/fatty acid mixtures with $^{31}P$-NMR and calorimetry, Chem. Phys. Lipids, 86, 161-169 (1997).   DOI
21 S. P. Verma, D. F. H. Wallach, and D. Sakura, Raman analysis of the thermotropic behavior of lecithin-fatty acid systems and of their interaction with proteolipid apoprotein, Biochemistry, 19, 574-579 (1980).   DOI
22 J. R. Usher, R. M. Epand, and D. Papahadjopoulos, The effect of free fatty acids on the thermotropic phase transition of dimyristoyl glycerophosphocholine, Chem. Phys. Lipids, 22, 245-253 (1978).   DOI
23 J. M. Seddon, R. H. Templer, A. A. Warrender, Z. Huang, G. Cevc, and D. Marsh, Phosphatidylcholinefatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal ($H_{II}$) phases, Biochim. Biophys. Acta 1327, 131-147 (1997).   DOI
24 Y. V. S. Rama Krishna, D. Marsh, Spin label ESR and $^{31}P$-NMR studies of the cubic and inverted hexagonal phases of dimyristoylphosphatidylcholine/myristic acid (1:2, mol/mol) mixtures, Biochim. Biophys. Acta, 1024, 89-94 (1990).   DOI
25 P. Hoyrup, J. Davidsen, and K. Jrgensen, Lipid membrane partitioning of lysolipids and fatty acids: Effects of membrane phase structure and detergent chain length, J. Phys. Chem. B, 105, 2649-2657 (2001).   DOI
26 D. Needham, G. Anyarambhatla, G. Kong, and M. W. Dewhirst, A new temperature-sensitive liposome for use with mild hyperthermia: Characterization and testing in a human tumor xenograft model, Cancer Res., 60, 1197-1201 (2000).
27 E. Yilmaz and H. H. Borchert, Design of a phytosphingosine-containing, positively-charged nanoemulsion as a colloidal carrier system for dermal application of ceramides, Eur. J. Pharm. Biopharm., 60, 91-98 (2005).   DOI