• Title/Summary/Keyword: membrane chemistry

Search Result 1,172, Processing Time 0.021 seconds

Characteristics and Preparation of Potassium Ion Selective Liquid Membrane Electrode Based on Polyurethane Matrix (폴리우레탄을 메트릭스로한 액막형 칼륨이온 선택성 전극의 제조 및 특성)

  • Kwang Sik Yoo;Yong Tack Lee;Chul Yong Kang
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.128-134
    • /
    • 1991
  • Previous matrices of potassium ion selective electrodes are generally based on PVC. In this study, however, the electrode membrane was prepared with polyurethane matrix containing potassium tetraphenyl borate as sensing materials and D-18-Crown-6 and 2-nitrophenyl-n-alkylethers as solvent mediator. The average life time of the K$^+$-selective electrode based on polyurethane was 75 days which is significantly longer than PVC based one. The slope factor in linear dynamic range ($1{\times}10^{-1}\;{\sim}\;1{\times}10^{-4}$ M) was 52 mV/decade. The electrode has been successfully applied to find end point in potentiometric titration of K$^+$ with tetraphenyl borate solution in the sea water, even in the presence of several interfering cations$(NH^{4+},\;Na^{+},\;Li^{+},\;Ca^{2+},\;Mg^{2+},\;Cu^{2+}$).

  • PDF

The Utility of Measuring Assimiliable Organic Carbon (AOC) as an Indicator of Biostability in Distribution Systems for Finished Water

  • Chang, Young-Cheol;Toyama, Tadashi;Jung, Kweon;Kikuchi, Shitaro
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.6
    • /
    • pp.539-542
    • /
    • 2006
  • The objective of this paper is to compare the applicability of assimilable organic carbon (AOC) or biodegradable dissolved organic carbon (BDOC) for quantifying biodegradable organic material (BOM) and bio-stability in distribution systems for a variety of finished waters. The study the data is derived from was part of an AWWARF and Tampa Bay Water tailored collaboration project to determine the effect of blending different waters on distribution system water quality. Seven different finished waters were produced from surface, ground, or brackish water on site and fed 18 independent pilot distribution systems (PDSs), either as single finished water or as a blend of several finished waters. AOC and BDOC have often been used as indicators of bacterial regrowth potential in distribution systems. In this study, AOC was the more useful assay of the two for the BOM concentrations observed in the PDSs. BDOC did not distinguish BOM while AOC did at the low BOM levels from many of the advanced treatments (e.g. RO, $O^3/BAC$). AOC in contrast allowed much more meaningful calculations of the consumption or production of AOC as the blends passed through the PDSs even for very low BOM blends. In addition, meaningful trends corresponding to changes in heterophic plate count (HPC) were observed for AOC but not for BDOC. Moreover, AOC stability was associated with waters produced from advanced membrane treatment.

INITIATION OF LIPID PEROXIDATION AS A RESULT OF THE COMBINED ACTION OF FERRIC IRON AND LIGHT ON MEMBRANES

  • Park, Zee-Yong;Kim, Chang-Sook;Jung, Jin
    • Journal of Photoscience
    • /
    • v.1 no.2
    • /
    • pp.83-88
    • /
    • 1994
  • The synergic effect of iron plus blue light on the peroxidation of membrane lipid was investigated, using liposomes made of phospholipid. While strong irradiation did not affect Fe$^{+2}$-promoted lipid peroxidation that turned out to be O$_2$-dependent, ferric iron in bright light exerted a pronounced effect on the initiation of lipid peroxidation: this combined action of light and Fe$^{+3}$ on liposomal membranes was apparently independent of O$_2$. When liposomal samples containing Fe$^{+3}$ were subjected to irradiation, some portions of Fe$^{+3}$ were converted into Fe$^{+2}$. The extent of the Fe$^{+3}$-Fe$^{+2}$ conversion increased with increasing time of irradiation, which resembled the dependence of Fe$^{+3}$-promoted lipid peroxidation on irradiation. Further, it was observed that the effect of irradiation in liposomal samples containing Fe$^{+2}$ was strikingly mimicked by that of Fe$^{+2}$ addition to the same samples. The obligatory requirement of a suitable Fe$^{+3}$/Fe$^{+2}$ ratio for the genesis of iron-dependent lipid peroxidation, a controversial proposition, was also confirmed by the observation that lipid peroxidation was substantially enhanced by the addition of a mixture of Fe$^{+3}$ and Fe$^{+2}$, as compared to the addition of Fe$^{+3}$ or Fe$^{+2}$ alone. The results obtained in this study not only suggest that light acts as an effector for initiating lipid peroxidation, when Fe$^{+3}$ is present in membrane systems, but also imply that any chemical or physical factor that influences the redox states of iron in membranes can play a role in lipid peroxidation reactions.

  • PDF

A Comprehensive Identification of Synaptic Vesicle Proteins in Rat Brains by cRPLC/MS-MS and 2DE/MALDI-TOF-MS

  • Lee, Won-Kyu;Kim, Hye-Jung;Min, Hye-Ki;Kang, Un-Beom;Lee, Cheol-Ju;Lee, Sang-Won;Kim, Ick-Young;Lee, Seung-Taek;Kwon, Oh-Seung;Yu, Yeon-Gyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1499-1509
    • /
    • 2007
  • Proteomic analyses of synaptic vesicle fraction from rat brain have been performed for the better understanding of vesicle regulation and signal transmission. Two different approaches were applied to identify proteins in synaptic vesicle fraction. First, the isolated synaptic vesicle proteins were treated with trypsin, and the resulting peptides were analyzed using a high-pressure capillary reversed phase liquid chromatography/tandem mass spectrometry (cRPLC/MS/MS). Alternatively, proteins were separated by two-dimensional gel electrophoresis (2DE) and identified by matrix-assisted laser desorption ionization mass spectrometry (MALDI-TOF/MS). Total 18 and 52 proteins were identified from cRPLC/MS-MS and 2DE-MALDI-TOF-MS analysis, respectively. Among them only 2 proteins were identified by both methods. Of the proteins identified, 70% were soluble proteins and 30% were membrane proteins. They were categorized by their functions in vesicle trafficking and biogenesis, energy metabolism, signal transduction, transport and unknown functions. Among them, 27 proteins were not previously reported as synaptic proteins. The cellular functions of unknown proteins were estimated from the analysis of domain structure, expression profile and predicted interaction partners.

Transport Rate of Transition Metal Cations through a Bulk Liquid Membrane Containing $NtnOenH_4$ and $NdienOenH_4$ as Carriers (운반체로 $NtnOenH_4$$NdienOenH_4$를 포함한 액체막을 통한 전이금속 양이온의 운반속도)

  • Kim, Hae Joong;Chang, Jeong Ho;Shin, Young Kook
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.77-81
    • /
    • 1997
  • The transport rates of transition metal cations were increased in order of Ni(II)$(NtnOenH_4)$and 1,12,15-triaza-3,4;9,10-dibenzo-5,8-dioxacyclo-heptadecane$(NdienOenH_4)$as carriers. The transport rates of transition metal cations was found to be of first order to the salt concentrations. It was also found that the dissociation process in the transport process is rate determining step. From the measurements of the transport rates at various temperatures, the partition free energies of hydration$({\Delta}G_p)$for the transition metal cations were calculated. The results showed that the order of transport rates of transition metal cations was found to be proportional to the magnitudes of negative value of the partition free energies of hydration$({\Delta}G_p)$.

  • PDF

Mesoporous Silica-Carbon Composite Membranes for Simultaneous Hydrolysis and Separation of Chiral Epoxide (카본/메조세공 실리카 복합 막을 응용한 키랄 에폭사이드의 가수분해반응과 동시 분리)

  • Choi, Seong Dae;Jeon, Sang Kwon;Park, Geun Woo;Yang, Jin Young;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.503-509
    • /
    • 2014
  • The carbon/porous silica composite membrane was fabricated in a simple manner, which could be successfully for the simultaneous separation and production of chiral epoxides and 1,2-diols, based on their differences in hydrophilic/hydrophobic natures. The chiral Co(III)-$BF_3$ salen catalyst adopted in the membrane reactor system has given the very high enantioselectivity and recyclability in hydrolysis of terminal epoxides such as ECH, 1,2-EB, and SO. The optically pure epoxide and the chiral catalyst were collected in the organic phase after hydrolysis reaction. The hydrophilic water-soluble 1,2-diol product hydrolyzed by chiral salen diffused into the aqueous phase through the SBA-16 or NaY/SBA-16 silica composite layer during the reaction. The water acted simultaneously as a reactant and a solvent in the membrane system. One optical isomer was obtained with high purity and yield, and furthermore the catalysts could be recycled without observable loss in their activity in the continuous flow-type membrane reactor.

Separation of Gases ($H_2$, $N_2$, $CO_2$, $CH_4$) by PEBAX-NaY Zeolite Composite Membranes (PEBAX-NaY zeolite 복합막에 의한 기체($H_2$, $N_2$, $CO_2$, $CH_4$) 분리에 관한 연구)

  • Kim, Seul Gi;Kang, Tae Beom
    • Membrane Journal
    • /
    • v.25 no.1
    • /
    • pp.27-31
    • /
    • 2015
  • PEBAX[poly(ether-block-amide)]-NaY zeolite composite membrane was studied on the permeability of penetrant $H_2$, $N_2$, $CO_2$ and $CH_4$ and the selectivity. When the NaY zeolite contents of PEBAX-NaY zeolite membranes were increased, the permeability of $H_2$ was increased, but the permeability of $N_2$, $CH_4$ and $CO_2$ was decreased. By the addition of NaY zeolite into PEBAX, the gas selectivity for $H_2$, $N_2$ and $CO_2$ was decreased except the increase of selectivity of $H_2/N_2$. $CO_2/N_2$, $H_2/CO_2$ and Gas/$CH_4$. The highest selectivity among these gases was from $CO_2$. In particular, the gas selectivity for $CO_2$ was the greatest with a value of 12~156.

Effect of Hydrogen Purge Mode on the Polymer Electrolyte Membrane Fuel Cell (PEMFC) Performance under Dead-ended Anode Operation (양극 닫힌계 작동에서 수소 배출 방법에 의한 고분자전해질 연료전지 성능 영향)

  • Kim, Junseob;Kim, Junbom
    • Applied Chemistry for Engineering
    • /
    • v.30 no.6
    • /
    • pp.687-693
    • /
    • 2019
  • As the hydrogen fuel cell market is expanded starting from hydrogen electric vehicle and power generation field, the demand for fuel cells and hydrogen increases recently. Therefore, research works on fuel cell durability and fuel efficiency are required in order to activate the fuel cell market and commercialization. A dead-ended anode system was used in this study to optimize the fuel cell performance and fuel efficiency. The effect of purge condition according to the applied current and hydrogen supply pressure on the fuel cell performance were evaluated. In addition, the influence of water back diffusion on the different electrolyte membrane thickness was analyzed. The accumulated water was purged with a solenoid valve in the case of 3% voltage decrease in the dead-ended anode system. The experiment was performed with the hydrogen supply pressure of 0.1~0.5 bar and purge duration of 0.1~1 second. A maximum fuel efficiency of 98.9% was achieved under the purge duration of 0.1 s and hydrogen supply pressure of 0.1 bar with a NR 211 (25.4 um) membrane. However, the fuel cell performance decreased in a long-term operation due to some frequent flooding. The fuel efficiency and purge interval increased due to decreased back diffusion rates of the water and nitrogen with a NR 212 (50.8 um) membrane.

Hydrophilic Modification of Polypropylene Microfiltration Membrane by Radiation-Induced Graft Polymerization and Water Permeability (방사선 조사 그라프트중합에 의한 폴리프로필렌 정밀여과막의 친수화 및 물 투과특성)

  • Park, Jae-Hyung;Lee, Kune-Woo;Hwang, Taek-Sung;Lee, Jae-Won;Oh, Won-Jin
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.954-959
    • /
    • 1999
  • Radiation-induced grafting of 2-hydroxyethyl methacrylate(HEMA), acrylic acid(AAc) and methacrylic acid(MAAc) onto polypropylene microfiltration membrane has been studied. The effect of grafting conditions such as solvent composition(MeOH and $H_2O$) and monomer concentration on the grafting yield in investigated. The highest degree of grafting is obtained at a solvent composition of 25% $H_2O$:75% MeOH for HEMA, pure water for AAc and 50% $H_2O$:50% MeOH for MAAc. Modification of the PP membranes with hydrophilic monomers is shown to cause an increase in the water permeation flux of the membranes. It is found that HEMA is the best monomer to increase the water permeation flux and the highest water permeation flux is obtained at 99% degree of grafting. The water permeation flux of AAc-grafted PP membrane and MAAc-grafted PP membrane is very sensitive to environmental pH and $Cu^{2+}$ ion, but the water permeation flux of HEMA-grafted PP membrane scarcely depends on pH and $Cu^{2+}$ ion.

  • PDF

Microfiltration Characteristics for Emulsified Oil in Water (에멀젼형 오일 수용액에 관한 정밀여과 특성)

  • ;;;Fane, Anthony G.
    • Membrane Journal
    • /
    • v.8 no.4
    • /
    • pp.203-209
    • /
    • 1998
  • The cutting oil emulsion microfiltration was carried out on dead-end call and crossflow systems equipped with 0.22 $\mu$m GVHP Millipore and 0.2 m stainless steel Mott microfiltration membranes, respectivdy. The oil drop size in the emulsion was varied from 0.07 to 0.22 $\mu$m. Cake filtration(CFM) and standard pore blocking models(SPBM) were applied to predict the permeation flux. The permeation fluxes of 0.01 vol% oil emulsion followed CFM for dead-end system very well under the condition of 400 rpm and below 100 kPa. The SPBM was, however, suitable for the permeation flux at 400 rpm and above 150 kPa. The oil layer on the membrane surface was destroyed and reproduced repeatedly as operating pressure was suddenly changed from 60 to 200 kPa, and then returned to 60 kPa. Also, we estimated the critical entry pressure(CEP) which is changed from CFM to SPBM, and CEP for dead-end system was around 100 kPa. The CEP increased from around 100 to 150 kPa for the crossflow system as the oil concentration increased from 0.01 to 0.03 vol% when Reynolds number was 7080.

  • PDF