• Title/Summary/Keyword: membrane chemistry

Search Result 1,172, Processing Time 0.032 seconds

Surface Modification of Magnetites Using Maltotrionic Acid and Folic Acid for Molecular Imaging

  • Selim, K.M.Kamruzzaman;Lee, Joo-Hee;Kim, Sun-Jung;Xing, Zhicai;Kang, Inn-Kyu;Chang, Yong-Min;Guo, Haiqing
    • Macromolecular Research
    • /
    • v.14 no.6
    • /
    • pp.646-653
    • /
    • 2006
  • Highly hydrophilic, uniform, superparamagnetic and nontoxic maltotrionic acid (MA)-coated magnetite nano-particles (MAM) were prepared and characterized by TEM, DLS, XRD and VSM. MA was used to improve the biocompatibility, monodispersity and non-specific intracellular uptake of nanoparticles. Folic acid (FA) was subsequently conjugated to the MAM to preferentially target KB cells (cancer cells) that have folate receptors expressed on their surfaces and to facilitate nanoparticles in their transit across the cell membrane. Finally, fluorescence isothiocyanate (FITC) was added to the nanoparticles to visualize the nanoparticle internalization into KB cells. After the cells were cultured in a media containing the MAM and MAM-folate conjugate (FAMAM), the results of fluorescence and confocal microscopy showed that both types of nanoparticles were internalized into the cells. Nevertheless, the amount of FAMAM uptake was higher than that of MAM. This result indicated that nanoparticles modified with MA and FA could be used to facilitate the nanoparticle uptake to specific KB cells (cancer cells) for molecular imaging.

Raman Spectroscopy Studies of Graphene Nanoribbons and Chemical Doping in Graphene

  • Ryu, Sun-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.15-15
    • /
    • 2011
  • Atom-thick graphene membrane and nano-sized graphene objects (NGOs) hold substantial potential for applications in future molecular-scale integrated electronics, transparent conducting membranes, nanocomposites, etc. To realize this potential, chemical properties of graphene need to be understood and diagnostic methods for various NGOs are also required. To meet these needs, chemical properties of graphene and optical diagnostics of graphene nanoribbons (GNRs) have been explored by Raman spectroscopy, AFM and STM scanning probes. The first part of the talk will illustrate the role of underlying silicon dioxide substrates and ambient gases in the ubiquitous hole doping of graphene. An STM study reveals that thermal annealing generates out-of-plane deformation of nanometer-scale wavelength and distortion in $sp^2$ bonding on an atomic scale. Graphene deformed by annealing is found to be chemically active enough to bind molecular oxygen, which leads to a strong hole-doping. The talk will also introduce Raman spectroscopy studies of GNRs which are known to have nonzero electronic bandgap due to confinement effect. GNRs of width ranging from 15 nm to 100 nm have been prepared by e-beam lithographic patterning of mechanically exfoliated graphene followed by oxygen plasma etching. Raman spectra of narrow GNRs can be characterized by upshifted G band and strong disorder-related D band originating from scattering at ribbon edges. Detailed analysis of the G, D, and 2D bands of GNRs proves that Raman spectroscopy is still a reliable tool in characterizing GNRs despite their nanometer width.

  • PDF

Hydrogen Peroxide Induces Apoptosis of BJAB Cells Due to Formation of Hydroxyl Radicals Via Intracellular Iron-mediated Fenton Chemistry in Glucose Oxidase-mediated Oxidative Stress

  • Lee, Jeong-Chae;Son, Young-Ok;Choi, Ki-Choon;Jang, Yong-Suk
    • Molecules and Cells
    • /
    • v.22 no.1
    • /
    • pp.21-29
    • /
    • 2006
  • The aim of this study was to determine if hydrogen peroxide ($H_2O_2$) generated by glucose oxidase (GO) induces apoptosis or necrosis of BJAB cells and which radical is the direct mediator of cell death. We found that GO produced $H_2O_2$ continuously in low concentrations, similar to in vivo conditions, and decreased proliferation and cell viability in a dose-dependent manner. The GO-mediated cytotoxicity resulted from apoptosis, and was confirmed by monitoring the cells after H33342/Annexin V/propidium iodide staining. Decreases of mitochondrial membrane potential and intracellular glutathione level were found to be critical events in the $H_2O_2$-mediated apoptosis. Additional experiments revealed that $H_2O_2$ exerted its apoptotic action through the formation of hydroxyl radicals via the Fenton rather than the Haber-Weiss reaction. Moreover, intracellular redox-active iron, but not copper, participated in the $H_2O_2$-mediated apoptosis.

Photocatalytic Degradation of MB with One-body Photoanode (일체형 포토어노드를 활용한 메틸렌블루의 분해)

  • Shim, Eun-Jung;Bae, Sang-Hyun;Yoon, Jae-Kyung;Joo, Hyun-Ku
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.40-45
    • /
    • 2007
  • Methylene blue(MB) was photocatalytically degraded with one-body photoanode and solar simulator to investigate the possible application to both environmental purification and photoelectrochemical cell for hydrogen production. Photoactive titanium dioxide was formed on both sides of Ti plate following steps such as rinsing-annealing-calcination or anodizing(20 V, 30 V)-annealing($350^{\circ}C$, $450^{\circ}C)$ after etching. The prepared titania plate($2cm{\times}2\;cm$, ca 1.6 mg $TiO_2$ on the basis of $1\;{\mu}m$ thickness) was used to degrade MB(10 ppm in 200 mL solution). The reaction tended to follow the Langmuir-Hinshelwood kinetics with zero order. Comparative experiments with Degussa P25 showed the same zero order kinetics when 2 mg of P25 had been used, while the first order kinetics when 200 mg used. This concludes the feasibility of the prepared titania plate as a material for the purification of low-level harmful organics and an electrode or a membrane for photoelectrochemical system for hydrogen production.

Biologically-Inspired Selective and Sensitive Trinitrotoluene Sensors Using Conjugated Lipid-like Polymer Nanocoatings for CNT-FET Sensors

  • Jaworski, Justyn;Kim, Tae-Hyun;Yokoyama, Keisuke;Chung, Woo-Jae;Wang, Eddie;Lee, Byung-Yang;Hong, Seung-Hun;Majumdar, Arun;Lee, Seung-Wuk;Kwon, Ki-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.495-495
    • /
    • 2011
  • Miniaturized sensors capable of both sensitive and selective real-time monitoring of target analytes are tremendously valuable for various applications ranging from hazard detection to medical diagnostics. The wide-spread use of such sensors is currently limited due to insufficient selectivity for target molecules. We developed selective nanocoatings by combining trinitrotoluene (TNT) receptors bound to conjugated polydiacetylene (PDA) with single-walled carbon nanotube-field effect transistors (SWNT-FET). Selective binding events between TNT molecules and phage display derived TNT receptors were effectively transduced to sensitive SWNT-FET conductance sensors through the PDA coating. The resulting sensors exhibited unprecedented 1 fM sensitivity toward TNT in real time, with excellent selectivity over various similar aromatic compounds. Our biomimetic receptor coating approach may be useful for the development of sensitive and selective micro and nanoelectronic sensor devices for various other target analytes.

  • PDF

Electrochemical Characteristics on Methanol Oxidation of Pt-Ru/PPy/Nafion Composite Electrode (Pt-Ru/PPy/Nafion 복합체 전극의 메탄을 산화 특성)

  • Cho Seung-Koo;Park Jong-Ho
    • Journal of the Korean Electrochemical Society
    • /
    • v.7 no.4
    • /
    • pp.201-205
    • /
    • 2004
  • The Pt-Ru electrocatalyst was Prepared on Nafion membrane modified with Polypyrrole by chemical reduction of $H_2PtCI_6\;and\;RuCl_3$ solution ai precursor. From the electron dispersive microanalysis spectroscope(EDS), the Pt-Ru catalyst was located on the surface of Ppy/Nafion composite. The electrochemical oxidation of methanol on Pt-Ru catalyst deposited in Polypyrrole-impregnated Nafion was investigated by cyclic voltammetry (CV) and chronoamperometry. The onset potential of methanol oxidation was shifted to negative potential as the $RuCI_3$ concentration in deposition solution. Also, it was known that the Pt-Ru binary catalyst on Nafion could be directly deposited by using Polypyrrole and resulting Pt-Ru/PPy/Nafion was available for methanol oxidation.

Ginsenoside Rd and ischemic stroke; a short review of literatures

  • Nabavi, Seyed Fazel;Sureda, Antoni;Habtemariam, Solomon;Nabavi, Seyed Mohammad
    • Journal of Ginseng Research
    • /
    • v.39 no.4
    • /
    • pp.299-303
    • /
    • 2015
  • Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.

Bone Marrow Toxicity Caused by Estrogen Toxicity in a Yorkshire Terrier with Leydig Cell Tumor

  • Kim, Yoon-Hee;Ko, Kyu-Ryeon;No, Mi-Young;Kim, Jae-Hoon;Choi, Ul-Soo
    • Journal of Veterinary Clinics
    • /
    • v.36 no.2
    • /
    • pp.129-131
    • /
    • 2019
  • A 15-year-old intact Yorkshire terrier was presented with anorexia, lethargy, and a pale mucous membrane. A physical examination one year ago revealed right testis mass and subcutaneous petechia. Blood work revealed severe thrombocytopenia and mild anemia, and no abnormalities were found in serum chemistry or ultrasonography. The preoperative serum estrogen concentration was moderately elevated. The enlarged testis was surgically removed. A well-encapsulated mass composed of polyhedral or round with abundant eosinophilic cytoplasm containing fine granular or vacuolation were found in a histological examination of the removed tissue. The nuclei of tumor cells were round, and mitotic figures were low but neoplastic cells showed a mild invasive tendency to adjacent tissues with contained neoplastic cell emboli in one lymphatic lumen. A diagnosis of a malignant Leydig cell tumor was made. The patient recovered from surgery uneventfully, but his condition worsened despite repeated transfusions and supportive therapy, and he was euthanized according to the owner's decision. Leydig cell tumor should be included in estrogen toxicity associated with testicular mass.

Adsorption of microcystin onto activated carbon: A review

  • Ampiaw, Rita E.;Yaqub, Muhammad;Lee, Wontae
    • Membrane and Water Treatment
    • /
    • v.10 no.6
    • /
    • pp.405-415
    • /
    • 2019
  • Microcystins (MCs) are toxins produced by cyanobacteria causing a major environmental threat to water resources worldwide. Although several MCs have been reported in previous studies, microcystin-LR (m-LR) has been extensively studied as it is highly toxic. Among the several techniques employed for the removal of this toxin, adsorption with AC has been extensively studied. AC has gained wide attention as an effective adsorbent of m-LR due to its ubiquity, high sorption capacity, cost effectiveness and renewability. In this review, the adsorption of m-LR onto AC was evaluated using the information available in existing scientific literature. The effects of the pore volume and surface chemistry of AC on the adsorption of m-LR considering the structural and chemical properties of ACs were also discussed. Furthermore, we identified the parameters that influence adsorption, including natural organic matter (NOM), pH, and ionic strength during the m-LR adsorption process. The effect of these parameters on MCs adsorption onto AC from previous studied is compiled and highlighted. This review may provide new insights into future activated carbon-m-LR adsorption research, and broaden its application prospects.

Removal of ciprofloxacin from aqueous solution by activated carbon prepared from orange peel using zinc chloride

  • Koklu, Rabia;Imamoglu, Mustafa
    • Membrane and Water Treatment
    • /
    • v.13 no.3
    • /
    • pp.129-137
    • /
    • 2022
  • In this study, the removal of Ciprofloxacin (CPX) from aqueous solutions was investigated by a new activated carbon adsorbent prepared from orange peel (ACOP) with chemical activation using ZnCl2. The physicochemical properties of orange peel activated carbon were characterized by proximate and ultimate analysis, scanning electron microscopy, BET surface area determination and Fourier transformation infrared spectroscopic studies. According to Brunauer-Emmett-Teller isotherm and non-local-density functional theory, the cumulative surface area, pore volume and pore size of ACOP were determined as 1193 m2 g-1, 0.83 cc g-1 and 12.7 Å, respectively. The effects of contact time, pH, temperature and ACOP dose on the batch adsorption of CPX were studied. Adsorption equilibrium data of CPX with ACOP were found to be compatible with both the Langmuir and Freundlich isotherms. CPX adsorption capacity of ACOP was calculated as 181.8 mg g-1 using Langmuir isotherm. The CPX adsorption kinetics were found to be harmonious with the pseudo-second-order kinetic model. Conclusively, ACOP can be assessable as an effective adsorbent for the removal of ciprofloxacin (CPX) from aqueous solutions.