Browse > Article
http://dx.doi.org/10.12989/mwt.2019.10.6.405

Adsorption of microcystin onto activated carbon: A review  

Ampiaw, Rita E. (Department of Environmental Engineering, Kumoh National Institute of Technology)
Yaqub, Muhammad (Department of Environmental Engineering, Kumoh National Institute of Technology)
Lee, Wontae (Department of Environmental Engineering, Kumoh National Institute of Technology)
Publication Information
Membrane and Water Treatment / v.10, no.6, 2019 , pp. 405-415 More about this Journal
Abstract
Microcystins (MCs) are toxins produced by cyanobacteria causing a major environmental threat to water resources worldwide. Although several MCs have been reported in previous studies, microcystin-LR (m-LR) has been extensively studied as it is highly toxic. Among the several techniques employed for the removal of this toxin, adsorption with AC has been extensively studied. AC has gained wide attention as an effective adsorbent of m-LR due to its ubiquity, high sorption capacity, cost effectiveness and renewability. In this review, the adsorption of m-LR onto AC was evaluated using the information available in existing scientific literature. The effects of the pore volume and surface chemistry of AC on the adsorption of m-LR considering the structural and chemical properties of ACs were also discussed. Furthermore, we identified the parameters that influence adsorption, including natural organic matter (NOM), pH, and ionic strength during the m-LR adsorption process. The effect of these parameters on MCs adsorption onto AC from previous studied is compiled and highlighted. This review may provide new insights into future activated carbon-m-LR adsorption research, and broaden its application prospects.
Keywords
algal bloom; adsorption; activated carbon; cyanobacteria; microcystins;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Randtke, S.J. and Snoeyink, V.L. (1983), "Evaluating GAC adsorptive capacity", J. Am. Water Works Assoc., 75, 406-413. https://doi.org/10.1002/j.1551-8833.1983.tb05177.x.   DOI
2 Rodrigues, M.A., Reis, M.P. and Mateus, M.C. (2013), "Liquid chromatography/negative electrospray ionization ion trap MS2 mass spectrometry application for the determination of microcystins occurrence in Southern Portugal water reservoirs", Toxicon, 74, 8-18. https://doi.org/10.1016/j.toxicon.2013.07.013.   DOI
3 Rodriguez, I., Alfonso, C., Alfonso, A., Otero, P., Meyer, T., Breitenbach, U. and Botana, L.M. (2014), "Toxin profile in samples collected in fresh and brackish water in Germany", Toxicon, 91, 35-44. https://doi.org/10.1016/j.toxicon.2014.10.018.   DOI
4 Rositano, J., Newcombe, G., Nicholson, B. and Sztajnbok, P. (2001), "Ozonation of NOM and algal toxins in four treated waters", Water Res., 35(1), 23-32. https://doi.org/: 10.1016/S0043-1354(00)00252-9.   DOI
5 Rositano, J., Nicholson, B.C. and Pieronne, P. (1998), "Destruction of cyanobacterial toxins by ozone", Ozone: Science & Engineering, 20, 223-238. https://doi.org/10.1080/01919519808547273.   DOI
6 Lawton, L.A and Robertson, P.K.J. (1999), "Physico-chemical treatment methods for the removal of microcystins (cyanobacterial hepatotoxins) from potable waters", Chem. Soc. Rev., 28, 217-224. https://doi.org/10.1039/a805416i.   DOI
7 Lee, J. and Walker, H.W. (2006), "Effect of process variables and natural organic matter on removal of microcystin-LR by PAC -UF", Environ. Sci. Technol., 40, 7336-7342. https://doi.org/10.1021/es060352r.   DOI
8 Lee, J. J., Walker, H., Weavers, L., Lenhart, J. and Chin, Y. (2009), "Removal of microcystin-lr from drinking water using adsorption and membrane processes", Ph.D. Dissertation, The Ohio State University, Columbus, USA.
9 Leon, C.A., Leon, D. and Radovic, L.R. (1991), "Interfacial chemistry and electrochemistry of carbon surfaces", Chemistry and Physics of Carbon, 24, Marcel Dekker Inc., New York, USA.
10 Sengul, A.B., Ersan, G. and Tufekci, N. (2018), "Removal of intraand extracellular microcystin by submerged ultrafiltration (UF) membrane combined with coagulation/flocculation and powdered activated carbon (PAC) adsorption", J. Hazard. Mater., 343, 29-35. https://doi.org/10.1016/j.jhazmat.2017.09.018.   DOI
11 Shang, L., Feng, M., Xu, X., Liu, F., Ke, F. and Li, W. (2018), "Co-occurrence of microcystins and taste-and-odor compounds in drinking water source and their removal in a full-scale drinking water treatment plant", Toxins (Basel), 10, 1-17. https://doi.org/10.3390/toxins10010026.   DOI
12 Singh, S., Rai, P.K., Chau, R., Ravi, A.K., Neilan, B.A. and Asthana, R.K. (2015), "Temporal variations in microcystinproducing cells and microcystin concentrations in two fresh water ponds", Water Res., 69, 131-142. https://doi.org/10.1016/j.watres.2014.11.015.   DOI
13 Liu, Y., Chen, W., Li, D., Huang, Z., Shen, Y. and Liu, Y. (2011), "Cyanobacteria/cyanotoxin-contaminations and eutrophication status before Wuxi Drinking Water Crisis in Lake Taihu, China", J. Environ. Sci., 23, 575-581. https://doi.org/10.1016/S1001-0742(10)60450-0.   DOI
14 Li, F., Yuasa, A., Ebie, K., Azuma, Y., Hagishita, T. and Matsui, Y. (2002), "Factors affecting the adsorption capacity of dissolved organic matter onto activated carbon: modified isotherm analysis", Water Res., 36, 4592-4604. https://doi.org/10.1016/S0043-1354(02)00174-4.   DOI
15 Li, Q., Snoeyink, V.L., Mariaas, B.J. and Campos, C. (2003), "Elucidating competitive adsorption mechanisms of atrazine and NOM using model compounds", Water Res. 37, 773-784. https://doi.org/10.1016/S0043-1354(02)00390-1.   DOI
16 Li, Z., Yu, J., Yang, M., Zhang, J., Burch, M.D. and Han, W. (2010), "Cyanobacterial population and harmful metabolites dynamics during a bloom in Yanghe Reservoir, North China", Harmful Algae, 9, 481-488. https://doi.org/10.1016/j.hal.2010.03.003.   DOI
17 Srivastava, A., Choi, G.G., Ahn, C.Y., Oh, H.M., Ravi, A.K. and Asthana, R.K. (2012), "Dynamics of microcystin production and quantification of potentially toxigenic Microcystis sp. using realtime PCR", Water Res., 46, 817-827. https://doi.org/10.1016/j.watres.2011.11.056.   DOI
18 Sivonen K. and Jones, G. (1999), "Cyanobacterial toxins. In:Chorus I, Bartram J (eds) Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management, Consequences, Monitoring and Management", World Health Organization, Geneva, Switzerland. 41-111.
19 Snoeyink, V.L. and Weber, W.J. (1967), "The Surface Chemistry of Active Carbon, A Discussion of Structure and Surface Functional Groups", Environ. Sci. Technol., 1, 228-234. https://doi.org/10.1021/es60003a003.   DOI
20 Song, W., Teshiba, T., Rein, K. and O'Shea, K.E. (2005), "Ultrasonically induced degradation and detoxification of microcystin-LR (Cyanobacterial Toxin)", Environ. Sci. Technol., 39, 6300-6305. https://doi.org/10.1021/es048350z.   DOI
21 Faassen, E.J. and Lurling, M. (2013), "Occurrence of the microcystins MC-LW and MC-LF in dutch surface waters and their contribution to total microcystin toxicity", Mar. Drugs, 11, 2643-2654. https://doi.org/10.3390/md11072643.   DOI
22 Svrcek, C. and Smith, D.W. (2004), "Cyanobacteria toxins and the current state of knowledge on water treatment options: A review", J. Environ. Eng. Sci., 3, 155-185. https://doi.org/10.1139/s04-010.   DOI
23 Taylor, P., Winter, J.G., Desellas, A.M., Fletcher, R., Heintsch, L., Nakamoto, L., Utsumi, K. and Morley, A. (2011), "Lake and Reservoir Management Algal blooms in Ontario, Canada :Increases in reports since 1994", Lake Reserv. Manag., 27, 37-41. https://doi.org/10.1080/07438141.2011.557765.
24 Tian, D., Zheng, W., Wei, X., Sun, X., Liu, L., Chen, X., Zhang, H., Zhou, Y., Chen, H., Zhang, H., Wang, X., Zhang, R., Jiang, S., Zheng, Y., Yang, G. and Qu, W. (2013), "Dissolved microcystins in surface and ground waters in regions with high cancer incidence in the Huai River Basin of China", Chemosphere, 91, 1064-1071. https://doi.org/10.1016/j.chemosphere.2013.01.051.   DOI
25 Maatouk, I., Bouaicha, N., Fontan, D. and Levi, Y. (2002), "Seasonal variation of microcystin concentrations in the Saint-Caprais reservoir (France) and their removal in a small full-scale treatment plant", Water Res., 36, 2891-2897. https://doi.org/10.1016/S0043-1354(01)00507-3.   DOI
26 Mashile, P.P., Mpupa, A. and Nomngongo, P.N. (2018), "Adsorptive removal of microcystin-LR from surface and wastewater using tyre-based powdered activated carbon:Kinetics and isotherms", Toxicon, 145, 25-31. https://doi.org/10.1016/j.toxicon.2018.02.044.   DOI
27 Dubinin, M.M. (1960), "The potential theory of adsorption of gases and vapors for adsorbents with energetically nonuniform surfaces", Chem. Rev., 60, 235-241. https://doi.org/10.1021/cr60204a006.   DOI
28 Duong, T.T., Le, T.P.Q., Dao, T.S., Pflugmacher, S., Rochelle-Newall, E., Hoang, T.K., Vu, T.N., Ho, C.T. and Dang, D.K. (2013), "Seasonal variation of cyanobacteria and microcystins in the Nui Coc Reservoir, Northern Vietnam", J. Appl. Phycol. 25, 1065-1075. https://doi.org/10.1007/s10811-012-9919-9.   DOI
29 Falconer, I.R., Runnegar, M.T.C., Buckley, T., Huyn, L. and Bradshaw, P. (1989b), "Using activated carbon to remove toxicity from drinking water containing cyanobacterial blooms", J. Am. Water Work. Assoc., 81, 102-106. https://doi.org/10.1002/j.1551-8833.1989.tb03170.x.
30 Fathalli, A., Ben Rejeb Jenhani, A., Moreira, C., Welker, M., Romdhane, M., Antunes, A. and Vasconcelos, V. (2011), "Molecular and phylogenetic characterization of potentially toxic cyanobacteria in Tunisian freshwaters", Syst. Appl. Microbiol. 34, 303-310. https://doi.org/10.1016/j.syapm.2010.12.003.   DOI
31 Ferranti, P., Fabbrocino, S., Chiaravalle, E., Bruno, M., Basile, A., Serpe, L. and Gallo, P. (2013), "Profiling microcystin contamination in a water reservoir by MALDI-TOF and liquid chromatography coupled to Q/TOF tandem mass spectrometry", Food Res. Int., 54, 1321-1330. https://doi.org/10.1016/j.foodres.2012.12.028.   DOI
32 Faust, S.D. and Aly, O.M. (1987), Adsorption Process for Water Treatment, Stoneham: Butterworths Publishers, United Kingdom.
33 Newcombe, G. (2002), "Removal of algal toxins from drinking water using ozone and GAC", AWWA Research Foundation Report, American Water Works Association, Denver, CO
34 Mbukwa, E.A., Msagati, T.A.M. and Mamba, B.B. (2012), "Quantitative variations of intracellular microcystin-LR, -RR and -YR in samples collected from four locations in Hartbeespoort Dam in North West Province (South Africa) during the 2010/2011 summer season", Int. J. Environ. Res. Public Health 9, 3484-3505. https://doi.org/10.3390/ijerph9103484.   DOI
35 Miles, C.O., Sandvik, M., Nonga, H.E., Rundberget, T., Wilkins, A.L., Rise, F. and Ballot, A. (2013), "Identification of microcystins in a Lake Victoria cyanobacterial bloom using LCMS with thiol derivatization", Toxicon, 70, 21-31. https://doi.org/10.1016/j.toxicon.2013.03.016.   DOI
36 Mooney, K.M., Hamilton, J.T.G., Floyd, S.D., Foy, R.H. and Elliott, C.T. (2011), "Initial studies on the occurrence of cyanobacteria and microcystins in Irish lakes", Environ. Toxicol., 26, 566-570. https://doi.org/10.1002/tox.20577.   DOI
37 Newcombe, G; and Drikas, M. (1997), "Adsorption of NOM onto activated carbon: Electrostatic and non-electrostatic effects", Carbon N. Y., 35, 1239-1250. https://doi.org/10.1016/S0008-6223(97)00078-X.   DOI
38 Gijsbertsen-Abrahamse, A.J, Schmidt, W., Chorus, I. and Heijman, S.G.J. (2006), "Removal of cyanotoxins by ultrafiltration and nano filtration", J. Membr. Sci., 276(1-2), 252-259. https://doi.org/10.1016/j.memsci.2005.09.053.   DOI
39 Triantis, T., Tsimeli, K., Kaloudis, T., Thanassoulias, N., Lytras, E. and Hiskia, A. (2010), "Development of an integrated laboratory system for the monitoring of cyanotoxins in surface and drinking waters", Toxicon, 55, 979-989. https://doi.org/10.1016/j.toxicon.2009.07.012.   DOI
40 Turner, A.D., Dhanji-Rapkova, M., O'Neill, A., Coates, L., Lewis, A. and Lewis, K. (2018), "Analysis of microcystins in cyanobacterial blooms from freshwater bodies in England", Toxins (Basel), 10(1), 39. https://doi.org/10.3390/toxins10010039.   DOI
41 Keijola, A.M., Himberg, K., Esala, A.L., Sivonen, K. and Hiis-Virta, L. (1988), "Removal of cyanobacterial toxins in water treatment processes: Laboratory and pilot-scale experiments", Toxic. Assess., 3, 643-656. https://doi.org/10.1002/tox.2540030516.   DOI
42 Khaleel, M.R., Ahsan, A., Imteaz, M., El-Sergany, M.M., Nik Daud, N.N., Mohamed, T. A. and Ibrahim, B.A. (2015), "Performance of GACC and GACP to treat institutional wastewater: A sustainable technique", Membr. Water Treat., 6(4), 339-349. http://dx.doi.org/10.12989/mwt.2015.6.4.339.   DOI
43 Kilduff, J.E., Karanfil, T., Chin, Y.P. and Weber, W.J. (1996), "Adsorption of natural organic polyelectrolytes by activated carbon: A size-exclusion chromatography study", Environ. Sci. Technol., 30, 1336-1343. https://doi.org/10.1021/es950547r.   DOI
44 Kruger, T., Wiegand, C., Kun, L., Luckas, B. and Pflugmacher, S. (2010), "More and more toxins around-analysis of cyanobacterial strains isolated from Lake Chao (Anhui Province, China)", Toxicon, 56, 1520-1524. https://doi.org/10.1016/j.toxicon.2010.09.004.   DOI
45 Lalezary-Craig, S., Pirbazari, M., Dale, M.S., Tanaka, T.S. and McGuire, M.J. (1988), "Optimizing the removal of Geosmin and 2-Methylisoborneol by powdered activated carbon", J. Am. Water Works Assoc., 80, 73-80. https://doi.org/10.1002/j.1551-8833.1988.tb03028.x.
46 Lambert, T.W., Holmes, C.F.B. and Hrudey, S.E. (1996), "Adsorption of microcystin-LR by activated carbon and removal in full scale water treatment", Water Res., 30, 1411-1422. https://doi.org/10.1016/0043-1354(96)00026-7.   DOI
47 Watanabe, T., Amano, Y. and Machida, M. (2012), "Screening of powdered activated carbons to remove 2-methylisoborneol for drinking water", Water Sci. Technol. Water Supply, 12, 300-308. https://doi.org/10.2166/ws.2011.134.   DOI
48 Vasas, G., Farkas, O., Borics, G., Felfoldi, T., Sramko, G., Batta, G., Bacsi, I., Gonda, S., Vasas, G., Farkas, O., Borics, G., Felfoldi, T., Sramko, G., Batta, G., Bacsi, I. and Gonda, S. (2013), "Appearance of Planktothrix rubescens Bloom with [DAsp3, Mdha7]MC-RR in Gravel Pit Pond of a Shallow Lake-Dominated Area", Toxins (Basel), 5, 2434-2455. https://doi.org/10.3390/toxins5122434.   DOI
49 Wang, H., Ho, L., Lewis, D.M., Brookes, J.D. and Newcombe, G. (2007), "Discriminating and assessing adsorption and biodegradation removal mechanisms during granular activated carbon filtration of microcystin toxins", Water Res., 41, 4262-4270. https://doi.org/10.1016/j.watres.2007.05.057.   DOI
50 Warhurst, A.M. Raggett, S.L. McConnachie, G. Pollard, S.J.T. Chipofya, V. and Codd, G.A. (1997), "Adsorption of the cyanobacterial hepatotoxin microcystin-LR by a low-cost activated carbon from the seed husks of the pan-tropical tree, Moringa oleifera", Sci. Total Environ., 207, 207-211.   DOI
51 Wijetunga, S. and Gunasekara, C.D.F.A. (2017), "Evaluation of refused tea waste activated carbon for color removal:Equilibrium and kinetic studies", Adv. Environ. Res., 6(1), 1-14. http://dx.doi.org/10.12989/aer.2017.6.1.001.   DOI
52 He, Q., Kang, L., Sun, X., Jia, R., Zhang, Y., Ma, J., Li, H. and Ai, H. (2018), "Spatiotemporal distribution and potential risk assessment of microcystins in the Yulin River, a tributary of the Three Gorges Reservoir, China", J. Hazard. Mater, 347, 184-195. https://doi.org/10.1016/j.jhazmat.2018.01.001.   DOI
53 Lanaras, T., Cook, C.M., Eriksson, J.E., Meriluoto, J.A.O. and Hotokka, M. (1991), "Computer modelling of the 3-dimensional structures of the cyanobacterial hepatotoxins microcystin-LR and nodularin", Toxicon, 29, 901-906. https://doi.org/10.1016/0041-0101(91)90228-J.   DOI
54 Graham, J.L., Loftin, K.A., Meyer, M.T. and Ziegler, A.C. (2010), "Cyanotoxin Mixtures and Taste-and-Odor Compounds in Cyanobacterial Blooms from the Midwestern United States", Environ. Sci. Technol., 44, 7361-7368. https://doi.org/10.1021/es1008938.   DOI
55 Greenwald, M.J., Redding, A.M. and Cannon, F.S. (2015), "A rapid kinetic dye test to predict the adsorption of 2-methylisoborneol onto granular activated carbons and to identify the influence of pore volume distributions", Water Res., 68, 784-792. https://doi.org/10.1016/j.watres.2014.10.022.   DOI
56 He, X., Liu, Y.L., Conklin, A., Westrick, J., Weavers, L.K., Dionysiou, D.D., Lenhart, J.J., Mouser, P.J., Szlag, D. and Walker, H.W. (2016b), "Toxic cyanobacteria and drinking water:Impacts, detection, and treatment", Harmful Algae, 54, 174-193. https://doi.org/10.1016/j.hal.2016.01.001.   DOI
57 Hena, S., Ismail, N., Isaam, A.M., Ahmad, A. and Bhawani, S.A. (2014), "Removal of microcystin-LR from aqueous solutions using% burn-off activated carbon of waste wood material", J. Water Supply Res. Technol. Aqua, 63(5), 332-341. https://doi.org/10.2166/aqua.2013.256.   DOI
58 Ho, L., Lambling, P., Bustamante, H., Duker, P. and Newcombe, G. (2011), "Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies", Water Res., 45, 2954-2964. https://doi.org/10.1016/j.watres.2011.03.014.   DOI
59 Hu, X., Ye, J., Zhang, R., Wu, X., Zhang, Y. and Wu, C. (2017), "Detection of free microcystins in the liver and muscle of freshwater fish by liquid chromatography-tandem mass spectrometry", J. Environ. Sci. Heal. B, Pestic. Food Contam. Agric. Wastes, 52, 770-776. https://doi.org/10.1080/03601234.2017.1356670.   DOI
60 Ho. L., Onstad, G., Von Gunten, U., Rinck-Pfeiffer, S., Craig, K. and Newcombe, G. (2006), "Differences in the chlorine reactivity of four microcystin analogues", Water Res., 40(6), 1200-1209. https://doi.org/10.1016/j.watres.2006.01.   DOI
61 Huang, W.J., Cheng, B.L. and Cheng, Y.L. (2007), "Adsorption of microcystin-LR by three types of activated carbon", J. Hazard. Mater., 141, 115-122. https://doi.org/10.1016/j.jhazmat.2006.06.122.   DOI
62 Ingole, P.G., Sawant, S.Y., Ingole, N.P., Pawar, R.R., Bajaj, H C., Singh, K., Cho, M. H. and Lee, H.K. (2016), "Preparation of activated carbon incorporated polysulfone membranes for dye separation", Membr. Water Treat., 7(6), 477-493. http://dx.doi.org/10.12989/mwt.2016.7.6.477.   DOI
63 Jia, J., Chen, Q. and Lauridsen, T.L. (2016), "A systematic investigation into the environmental fate of microcystins and the potential risk: Study in Lake Taihu", Toxins (Basel), 8, 170. https://doi.org/10.3390/toxins8060170.   DOI
64 Juang, R. S., Wu, F.C. and Tseng R.L. (2000), "Mechanism of adsorption of dyes and phenols from water using activated carbons prepared from plum kernels", J. Colloid Interface Sci., 277, 437-444. https://doi.org/10.1006/jcis.2000.6912.   DOI
65 Julio, M.D.F.D.J. (2011), "Carbon key-properties for microcystin adsorption in drinking water treatment: Structure or surface chemistry?", M.Sc. Dissertation, NOVA University Lisbon, Portugal.
66 Acero, J., Rodriguez, E. and Meriluoto, J. (2005), "Kinetics of reactions between chlorine and the cyanobacterial toxins microcystins", Water Res., 39, 1628-1638. https://doi: 10.1016/j.watres.2005.01.022.   DOI
67 Newcombe, G., Drikas, M. and Hayes, R. (1997), "Influence of characterised natural organic material on activated carbon adsorption: II. Effect on pore volume distribution and adsorption of 2-methylisoborneol", Water Res. 31, 1065-1073. https://doi.org/10.1016/S0043-1354(96)00325-9.   DOI
68 Xie, J., Wang, X. and Deng, J. (2004), "Modifying the pore structure of Pit-ACF with the chemical vapor deposition of methane and propylene", Microporous Mesoporous Mater., 76, 167-175. https://doi.org/10.1016/j.micromeso.2004.08.008.   DOI
69 Kaloudis, T., Zervou, S.K., Tsimeli, K., Triantis, T.M., Fotiou, T. and Hiskia, A. (2013), "Determination of microcystins and nodularin (cyanobacterial toxins) in water by LC-MS/MS, Monitoring of Lake Marathonas, a water reservoir of Athens, Greece", J. Hazard. Mater., 263, 105-115. https://doi.org/10.1016/j.jhazmat.2013.07.036.   DOI
70 Kasaoka, S., Sakata, Y. and Tanaka, E.N.R. (1989), "Preparation of activated fibrous carbon from phenolic fabric and its molecularsieve properties", Int. Chem. Eng., 29, 101-114.
71 Albuquerque Junior, E.C., Mendez, M.O.A., Coutinho, A. dos R., and Franco, T.T. (2008), "Removal of cyanobacteria toxins from drinking water by adsorption on activated carbon fibers", Mater. Res. 11, 371-380. https://doi.org/10.1590/S1516-14392008000300023.   DOI
72 Alighardashi, A., Pakan, M., Jamshidi, S. and Shariati, F.P. (2017), "Performance evaluation of membrane bioreactor (MBR) coupled with activated carbon on tannery wastewater treatment", Membr. Water Treat., 8(6), 517-528. http://dx.doi.org/10.12989/mwt.2017.8.6.517.   DOI
73 Ame, M.V., Galanti, L.N., Menone, M.L., Gerpe, M.S., Moreno, V.J. and Wunderlin, D.A. (2010), "Microcystin-LR, -RR, -YR and -LA in water samples and fishes from a shallow lake in Argentina", Harmful Algae 9, 66-73. https://doi.org/10.1016/j.hal.2009.08.001.   DOI
74 Bjelopavlic, M., Newcombe, G. and Hayes, R. (1999), "Adsorption of NOM onto activated carbon: Effect of surface charge, ionic strength, and pore volume distribution", J. Colloid Interface Sci. 210, 271-280. https://doi.org/10.1006/jcis.1998.5975.   DOI
75 Orr, P.T., Jones, G.J. and Hamilton, G.R. (2004), "Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide - Implications for compliance with the Australian drinking water guidelines", Water Res., 38, 4455-4461. https://doi.org/10.1016/j.watres.2004.08.024.   DOI
76 Newcombe, G., Morrison, J. and Hepplewhite, C. (2002), "Simultaneous adsorption of MIB and NOM onto activated carbon. I. Characterisation of the system and NOM adsorption", Carbon N. Y., 40, 2135-2146. https://doi.org/10.1016/S0008-6223(02)00097-0.   DOI
77 Ng, C., Losso, J.N., Marshall, W.E. and Rao, R.M. (2002), "Freundlich adsorption isotherms of agricultural by-productbased powdered activated carbons in a geosmin-water system", Bioresour. Technol., 85, 131-135. https://doi.org/10.1016/S0960-8524(02)00093-7.   DOI
78 Nicholson, B.C., Rositano, J. and Burch, M.D. (1994), "Destruction of cyanobacterial peptide hepatotoxins by chlorine and chloramine", Water Res., 28(6), 1297-1303. https://doi.org/10.1016/0043-1354 (94)90294-1.   DOI
79 Pavagadhi, S., Tang, A.L.L., Sathishkumar, M., Loh, K.P. and Balasubramanian, R. (2013), "Removal of microcystin-LR and microcystin-RR by graphene oxide: adsorption and kinetic experiments", Water Res., 47(13), 4621-4629. https://doi.org/10.1016/j.watres.2013.04.033.   DOI
80 Pavlova, V., Stoyneva-Gartner, M., Uzunov, B., Uzunov, B., Bratanova, Z., Lazarova, A. and Karadjova, I. (2015), "Microcystins-LR, -YR and -RR in Six Bulgarian Water Bodies of Health and Conservational Importance (2012-2014)", J. Water Resour. Prot., 07, 1375-1386. https://doi.org/10.4236/jwarp.2015.716111.   DOI
81 Yen, H.K., Lin, T.F. and Tseng, I.C. (2012), "Detection and quantification of major toxigenic Microcystis genotypes in Moo-Tan reservoir and associated water treatment plant", J. Environ. Monit., 14, 687-696. https://doi.org/10.1039/c1em10389j.   DOI
82 Yan, H., Gong, A., He, H., Zhou, J., Wei, Y. and Lv, L. (2006), "Adsorption of microcystins by carbon nanotubes", Chemosphere, 62, 142-148. https://doi.org/10.1016/j.chemosphere.2005.03.075.   DOI
83 Yeo, I., Park, Y. and Kim, D. (2018), "Developing numerical method to predict the removal of microcystin-LR in a clear well", Membr. Water Treat., 9(3), 173-179. http://dx.doi.org/10.12989/mwt.2018.9.3.173.   DOI
84 Yen, H.K., Lin, T.F. and Liao, P.C. (2011), "Simultaneous detection of nine cyanotoxins in drinking water using dual solidphase extraction and liquid chromatography-mass spectrometry", Toxicon, 58, 209-218. https://doi.org/10.1016/j.toxicon.2011.06.003.   DOI
85 Yu, G., Jiang, Y., Song, G., Tan, W., Zhu, M. and Li, R. (2014), "Variation of Microcystis and microcystins coupling nitrogen and phosphorus nutrients in Lake Erhai, a drinking-water source in Southwest Plateau, China", Environ. Sci. Pollut. Res., 21, 9887-9898. https://doi.org/10.1007/s11356-014-2937-1.   DOI
86 Zamyadi, A., Coral, L.A., Barbeau, B., Dorner, S., Lapolli, F.R. and Prevost, M. (2015), "Fate of toxic cyanobacterial genera from natural bloom events during ozonation", Water Res., 73, 204-215. https://doi.org/10.1016/j.watres.2015.01.029.   DOI
87 Zastepa, A., Pick, F.R. and Blais, J.M. (2014), "Fate and Persistence of Particulate and Dissolved Microcystin-LA from Microcystis Blooms", Hum. Ecol. Risk Assess. An Int. J., 20, 1670-1686. https://doi.org/10.1080/10807039.2013.854138.   DOI
88 Bouhaddada, R., Nelieu, S., Nasri, H., Delarue, G. and Bouaicha, N. (2016), "High diversity of microcystins in a Microcystis bloom from an Algerian lake", Environ. Pollut., 216, 836-844. https://doi.org/10.1016/j.envpol.2016.06.055.   DOI
89 Boehm, H.P., Diehl, E., Heck, W. and Sappok, R. (1964), "Surface Oxides of Carbon", Angew. Chemie Int. Ed. English, 3, 669-677. https://doi.org/10.1002/anie.196406691.   DOI
90 Boehm, H.P. (1994), "Some aspects of the surface chemistry of carbon blacks and other carbons", Carbon 5, 759-769 https://doi.org/10.1016/0008-6223(94)90031-0.   DOI
91 Brooks, B.W., Lazorchak, J.M., Howard, M.D.A., Johnson, M.V. V., Morton, S.L., Perkins, D.A.K., Reavie, E.D., Scott, G.I., Smith, S.A. and Steevens, J.A. (2016), "Are harmful algal blooms becoming the greatest inland water quality threat to public health and aquatic ecosystems?", Environ. Toxicol. Chem., 35, 6-13. https://doi.org/10.1002/etc.3220.   DOI
92 Campinas, M. and Rosa, M.J. (2010), "Removal of microcystins by PAC/UF", Sep. Purif. Technol., 71, 114-120. https://doi.org/10.1016/j.seppur.2009.11.010.   DOI
93 Campinas, M. and Rosa, M.J. (2006), "The ionic strength effect on microcystin and natural organic matter surrogate adsorption onto PAC", J. Colloid Interface Sci., 299, 520-529. https://doi.org/10.1016/j.jcis.2006.02.042.   DOI
94 Campinas, M., Viegas, R.M.C. and Rosa, M.J. (2013), "Modelling and understanding the competitive adsorption of microcystins and tannic acid", Water Res., 47, 5690-5699. https://doi.org/10.1016/j.watres.2013.06.048.   DOI
95 Campinas, M.P. (2009), "Removal of cyanobacteria and cyanotoxins from drinking water by powdered activated carbon adsorption/ultrafiltration". https://sapientia.ualg.pt/handle/10400.1/247.
96 Chow, C.W.K., Drikas, M., House, J., Burch, M.D. and Velzeboer, R.M.A. (1999), "The impact of conventional water treatment processes on cells of the cyanobacterium Microcystis aeruginosa", Water Res., 33(15), 3253-3262. https://doi.org/10.1016/S0043-1354 (99)00051-2.   DOI
97 Chen, G., Dussert, B.W. and Suffet, I.H. (1997), "Evaluation of granular activated carbons for removal of methylisoborneol to below odor threshold concentration in drinking water", Water Res., 31, 1155-1163. https://doi.org/10.1016/S0043-1354(96)00362-4.   DOI
98 Chennette, V.A.I. (2017), "Granular activated carbon for the removal of seasonally present Microcystin-LR", M.Sc. Dissertation, University of Waterloo, Ontario, Canada.
99 Chorus, I. and Bartram, J. (1999), Toxic Cyanobacteria in Water:A Guide to their Public Health Consequences, Monitoring and Management, World Health Organization, Geneva, Switzerland. https://doi.org/10.1201/9781482295061.
100 Considine, R., Denoyel, R., Pendleton, P., Schumann, R. and Wong, S.H. (2001), "The influence of surface chemistry on activated carbon adsorption of 2-methylisoborneol from aqueous solution", Colloids Surfaces A Physicochem. Eng. Asp., 179, 271-280. https://doi.org/10.1016/S0927-7757(00)00647-6.   DOI
101 Cook, D. and Newcombe, G. (2008), "Comparison and modeling of the adsorption of two microcystin analogues onto powdered activated carbon", Environ. Technol. 29, 525-534. https://doi.org/10.1080/09593330801984415.   DOI
102 Cook, D. and Newcombe, G. (2002), Removal of microcystin variants with powdered activated carbon, in: Water Science and Technology: Water Supply, IWA Publishing, 201-207. https://doi.org/10.2166/ws.2002.0170.
103 Diez-Quijada, L., Puerto, M., Gutierrez-Praena, D., Llana-Ruiz-Cabello, M., Jos, A. and Camean, A.M. (2019), "Microcystin-RR: Occurrence, content in water and food and toxicological studies, A review", Environ. Res. 168, 467-489. https://doi.org/10.1016/j.envres.2018.07.019.   DOI
104 De Ridder, D.J., Verliefde, A.R.D., Schoutteten, K., Van Der Linden, B., Heijman, S.G.J., Beurroies, I., Denoyel, R., Amy, G.L. and Van Dijk, J.C. (2013), "Relation between interfacial energy and adsorption of organic micropollutants onto activated carbon", Carbon N. Y. 53, 153-160. https://doi.org/10.1016/j.carbon.2012.10.042.   DOI
105 Dellero, T., Sarmeo, D. and Touzain, P. (1999), "Chemical heat pump using carbon fibers as additive. Part I: enhancement of thermal conduction", Appl. Therm. Eng., 19, 991-1000. https://doi.org/10.1016/S1359-4311(98)00104-5.   DOI
106 Diao, Y., Walawender, W. P. and Fan, L.T. (2002), "Activated carbons prepared from phosphoric acid activation of grain sorghum", Bioresource Technol., 81, 45-52. https://doi.org/10.1016/S0960-8524 (01)00100-6.   DOI
107 Dixon, M.B., Richard, Y., Ho, L., Chow, C.W.K., O'Neill, B.K. and Newcombe, G. (2011), "A coagulation-powdered activated carbon-ultrafiltration - Multiple barrier approach for removing toxins from two Australian cyanobacterial blooms", J. Hazard. Mater., 186, 1553-1559. https://doi.org/10.1016/j.jhazmat.2010.12.049.   DOI
108 Donati, C., Drikas, M., Hayes, R. and Newcombe, G. (1994), "Microcystin-LR adsorption by powdered activated carbon", Water Res., 28, 1735-1742. https://doi.org/10.1016/0043-1354(94)90245-3.   DOI
109 Douma, M., Ouahid, Y., Campo, F.F. Del, Loudiki, M., Mouhri, K. and Oudra, B. (2010), "Identification and quantification of cyanobacterial toxins (microcystins) in two Moroccan drinkingwater reservoirs (Mansour Eddahbi, Almassira)", Environ. Monit. Assess., 160, 439-450. https://doi.org/10.1007/s10661-008-0708-5.   DOI
110 Pekar, H., Westerberg, E., Bruno, O., Laane, A., Persson, K.M., Sundstrom, L.F. and Thim, A.M. (2016), "Fast, rugged and sensitive ultra high pressure liquid chromatography tandem mass spectrometry method for analysis of cyanotoxins in raw water and drinking water-First findings of anatoxins, cylindrospermopsins and microcystin variants in Swedish source waters and infiltration ponds", J. Chromatogr. A, 1429, 265-276. https://doi.org/10.1016/j.chroma.2015.12.049.   DOI
111 Pelekani, C. and Snoeyink, V.L. (1999), "Competitive adsorption in natural water: role of activated carbon pore size", Water Research, 33(5), 1209-1219. https://doi.org/10.1016/S0043-1354(98)00329-7.   DOI
112 Pendleton, P., Schumann, R. and Wong, S.H. (2001), "Microcystin-LR adsorption by activated carbon", J. Colloid Interface Sci., 240, 1-8. https://doi.org/10.1006/jcis.2001.7616.   DOI
113 Peng, L., Liu, Y., Chen, W., Liu, L., Kent, M. and Song, L. (2010), "Health risks associated with consumption of microcystin-contaminated fish and shellfish in three Chinese lakes:Significance for freshwater aquacultures", Ecotoxicol. Environ. Saf., 73, 1804-1811. https://doi.org/10.1016/j.ecoenv.2010.07.043.   DOI
114 Zhu, S., Yin, D., Gao, N., Zhou, S., Wang, Z. and Zhang, Z. (2016), "Adsorption of two microcystins onto activated carbon:equilibrium, kinetic, and influential factors", Desalin. Water Treat., 57, 23666-23674. https://doi.org/10.1080/19443994.2015.1137492.   DOI
115 Zhang, D., Liao, Q., Zhang, L., Wang, D., Luo, L., Chen, Y., Zhong, J. and Liu, J. (2015), "Occurrence and spatial distributions of microcystins in Poyang Lake, the largest freshwater lake in China", Ecotoxicology, 24, 19-28. https://doi.org/10.1007/s10646-014-1349-9.   DOI
116 Zhang, H., Zhu, G., Jia, X., Ding, Y., Zhang, M., Gao, Q., Hu, C. and Xu, S. (2011), "Removal of microcystin-LR from drinking water using a bamboo-based charcoal adsorbent modified with chitosan", J. Environ. Sci., 23, 1983-1988. https://doi.org/10.1016/S1001-0742(10)60676-6.   DOI
117 Zhong, Q., Sun, F., Wang, W., Xiao, W., Zhao, X. and Gu, K. (2017), "Water metabolism dysfunction via renin-angiotensin system activation caused by liver damage in mice treated with microcystin-RR", Toxicol. Lett., 273, 86-96. https://doi.org/10.1016/j.toxlet.2017.03.019.   DOI
118 Persson, F., Heinicke, G., Hedberg, T., Hermansson, M. and Uhl, W. (2007), "Removal of geosmin and MIB by biofiltration - An investigation discriminating between adsorption and biodegradation", Environ. Technol. 28, 95-104. https://doi.org/10.1080/09593332808618770.   DOI
119 Drikas, M., Chow, C.W.K., House, J. and Burch, M.D. (2001), "Using coagulation, flocculation, and settling to remove toxic cyanobacteria", J. Am. Water Works Assoc., 93, 100-111. https://doi.org/10.1002/j.1551-8833.2001.tb09130.x.   DOI
120 Drikas, M., Dixon, M. and Morran, J. (2009), "Removal of 2MIB and geosmin using granular activated carbon with and without MIEX pre-treatment", Water Res., 43, 5151-5159. https://doi.org/10.1016/j.watres.2009.08.016.   DOI
121 Preece, E.P., Hardy, F.J., Moore, B.C. and Bryan, M. (2017), "A review of microcystin detections in Estuarine and Marine waters:Environmental implications and human health risk", Harmful Algae, 61, 31-45. https://doi.org/10.1016/j.hal.2016.11.006.   DOI
122 Quinlivan, P.A., Li, L. and Knappe, D.R.U. (2005), "Effects of activated carbon characteristics on the simultaneous adsorption of aqueous organic micropollutants and natural organic matter", Water Res., 39, 1663-1673. https://doi.org/10.1016/j.watres.2005.01.029.   DOI