DOI QR코드

DOI QR Code

Ginsenoside Rd and ischemic stroke; a short review of literatures

  • Nabavi, Seyed Fazel (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences) ;
  • Sureda, Antoni (Research Group on Community Nutrition and Oxidative Stress, University of Balearic Islands, and CIBERobn (Physiopathology of Obesity and Nutrition)) ;
  • Habtemariam, Solomon (Pharmacognosy Research Laboratories, Medway School of Science, University of Greenwich) ;
  • Nabavi, Seyed Mohammad (Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences)
  • Received : 2014.12.18
  • Accepted : 2015.02.08
  • Published : 2015.10.15

Abstract

Panax ginseng is a well-known economic medical plant that is widely used in Chinese traditional medicine. This species contains a unique class of natural products-ginsenosides. Recent clinical and experimental studies have presented numerous lines of evidence on the promising role of ginsenosides on different diseases including neurodegenerative diseases, cardiovascular diseases, and certain types of cancer. Nowadays, most of the attention has focused on ginsenoside Rd as a neuroprotective agent to attenuate ischemic stroke damages. Some of the evidence showed that ginsenoside Rd ameliorates ischemic stroke-induced damages through the suppression of oxidative stress and inflammation. Ginsenoside Rd can prolong neural cells' survival through the upregulation of the endogenous antioxidant system, phosphoinositide-3-kinase/AKT and extracellular signal-regulated protein kinase 1/2 pathways, preservation of mitochondrial membrane potential, suppression of the nuclear factor-kappa B, transient receptor potential melastatin, acid sensing ion channels 1a, poly(ADP-ribose) polymerase-1, protein tyrosine kinase activation, as well as reduction of cytochrome c-releasing and apoptosis-inducing factor. In the current work, we review the available reports on the promising role of ginsenoside Rd on ischemic stroke. We also discuss its chemistry, source, and the molecular mechanism underlying this effect.

Keywords

References

  1. Mukherjee D, Patil CG. Epidemiology and the global burden of stroke. World Neurosurg 2011;76:S85-90. https://doi.org/10.1016/j.wneu.2011.07.023
  2. Grysiewicz RA, thomas K, Pandey DK. Epidemiology of ischemic and hemorrhagic stroke: incidence, prevalence, mortality, and risk factors. Neurol Clin 2008;26:871-95. https://doi.org/10.1016/j.ncl.2008.07.003
  3. Kleinig TJ, Vink R. Suppression of inflammation in ischemic and hemorrhagic stroke: therapeutic options. Curr Opin Neurol 2009;22:294-301. https://doi.org/10.1097/WCO.0b013e32832b4db3
  4. Nabavi SF, Li H, Daglia M, Nabavi SM. Resveratrol and stroke: from chemistry to medicine. Curr Neurovasc Res 2014;11:390-7. https://doi.org/10.2174/1567202611666140912114833
  5. Hossmann K-A. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J Cereb Blood Flow Metab 2012;32:1310-6. https://doi.org/10.1038/jcbfm.2011.186
  6. Bonita R. Epidemiology of stroke. Lancet 1992;339:342-4. https://doi.org/10.1016/0140-6736(92)91658-U
  7. Schwartz SW, Carlucci C, Chambless LE, Rosamond WD. Synergism between smoking and vital exhaustion in the risk of ischemic stroke: evidence from the ARIC study. Ann Epidemiol 2004;14:416-24. https://doi.org/10.1016/j.annepidem.2003.10.010
  8. Winter Y, Rohrmann S, Linseisen J, Lanczik O, Ringleb PA, Hebebrand J, Back T. Contribution of obesity and abdominal fat mass to risk of stroke and transient ischemic attacks. Stroke 2008;39:3145-51. https://doi.org/10.1161/STROKEAHA.108.523001
  9. Kurl S, Laukkanen JA, Niskanen L, Laaksonen D, Sivenius J, Nyyssonen K, Salonen JT. Metabolic syndrome and the risk of stroke in middle-aged men. Stroke 2006;37:806-11. https://doi.org/10.1161/01.STR.0000204354.06965.44
  10. Kjeldsen SEJ, Julies S, Hedner T, Hansson L. Stroke is more common than myocardial infarction in hypertension: analysis based on 11 major randomized intervention trials. Blood Press 2001;10:190-2. https://doi.org/10.1080/08037050152669684
  11. Feigin VL, Lawes CM, Bennett DA, Anderson CS. Stroke epidemiology: a review of population-based studies of incidence, prevalence, and case-fatality in the late 20th century. Lancet Neurol 2003;2:43-53. https://doi.org/10.1016/S1474-4422(03)00266-7
  12. Ayala C, Croft JB, Greenlund KJ, Keenan NL, Donehoo RS, Malarcher AM, Mensah GA. Sex differences in US mortality rates for stroke and stroke subtypes by race/ethnicity and age, 1995-1998. Stroke 2002;33:1197-201. https://doi.org/10.1161/01.STR.0000015028.52771.D1
  13. Nabavi S, Dean O, Turner A, Sureda A, Daglia M, Nabavi S. Oxidative stress and post-stroke depression: possible therapeutic role of polyphenols? Curr Med Chem 2015;22:343-51.
  14. Nabavi S, Turner A, Dean O, Sureda A, Nabavi S. Post-stroke depression therapy: where are we now? Curr Neurovasc Res 2014;11:279-89. https://doi.org/10.2174/1567202611666140522123504
  15. Slomski A. Insomnia increases stroke risk. JAMA 2014;311:2056.
  16. Psaltopoulou T, Sergentanis TN, Panagiotakos DB, Sergentanis IN, Kosti R, Scarmeas N. Mediterranean diet, stroke, cognitive impairment, and depression: a meta-analysis. Ann Neurol 2013;74:580-91. https://doi.org/10.1002/ana.23944
  17. Weimar C, Kraywinkel K, Rodl J, Hippe A, Harms L, Kloth A, Diener HC. Etiology, duration, and prognosis of transient ischemic attacks: an analysis from the German Stroke Data Bank. Arch Neurol 2002;59:1584-8. https://doi.org/10.1001/archneur.59.10.1584
  18. Saver JL, Johnston KC, Homer D, Wityk R, Koroshetz W, Truskowski LL, Haley EC. Infarct volume as a surrogate or auxiliary outcome measure in ischemic stroke clinical trials. Stroke 1999;30:293-8. https://doi.org/10.1161/01.STR.30.2.293
  19. Jacobsen B, Oda K, Knutsen S, Fraser G. Age at menarche, total mortality and mortality from ischaemic heart disease and stroke: the Adventist Health Study, 1976-88. Int J Epidemiol 2009;38:245-52. https://doi.org/10.1093/ije/dyn251
  20. Wang J, Ruotsalainen S, Moilanen L, Lepisto P, Laakso M, Kuusisto J. The metabolic syndrome predicts cardiovascular mortality: a 13-year follow-up study in elderly non-diabetic Finns. Eur Heart J 2007;28:857-64. https://doi.org/10.1093/eurheartj/ehl524
  21. Jin R, Yang G, Li G. Inflammatory mechanisms in ischemic stroke: role of inflammatory cells. J Leukocyte Biol 2010;87:779-89. https://doi.org/10.1189/jlb.1109766
  22. Chen H, Yoshioka H, Kim GS, Jung JE, Okami N, Sakata H, Maier CM, Narasimhan P, Goeders CE, Chan PH. Oxidative stress in ischemic brain damage: mechanisms of cell death and potential molecular targets for neuroprotection. Antioxid Redox Signal 2011;14:1505-17. https://doi.org/10.1089/ars.2010.3576
  23. Nabavi SM, Daglia M, Moghaddam AH, Nabavi SF, Curti V. Tea consumption and risk of ischemic stroke: a brief review of the literature. Curr Pharm Biotechnol 2014;15:298-303. https://doi.org/10.2174/1389201015666140617100945
  24. Griep LO, Verschuren WM, Kromhout D, Ocke MC, Geleijnse JM. Raw and processed fruit and vegetable consumption and 10-year stroke incidence in a population-based cohort study in the Netherlands. Eur J Clin Nutr 2011;65:791-9. https://doi.org/10.1038/ejcn.2011.36
  25. Hjartaker A, Knudsen MD, Tretli S, Weiderpass E. Consumption of berries, fruits and vegetables and mortality among 10,000 Norwegian men followed for four decades. Eur J Nutr 2014. http://dx.doi.org/10.1007/s00394-014-0741-9.
  26. Hu D, Huang J, Wang Y, Zhang D, Qu Y. Fruits and vegetables consumption and risk of stroke a meta-analysis of prospective cohort studies. Stroke 2014;45:1613-9. https://doi.org/10.1161/STROKEAHA.114.004836
  27. Lin Y, Chen F, Zhang J, Wang T, Wei X, Wu J, Feng Y, Dai Z, Wu Q. Neuroprotective effect of resveratrol on ischemia/reperfusion injury in rats through TRPC6/CREB pathways. J Mol Neurosci 2013;50:504-13. https://doi.org/10.1007/s12031-013-9977-8
  28. Sinha K, Chaudhary G, Kumar Gupta Y. Protective effect of resveratrol against oxidative stress in middle cerebral artery occlusion model of stroke in rats. Life Sci 2002;71:655-65. https://doi.org/10.1016/S0024-3205(02)01691-0
  29. Yang C, Zhang X, Fan H, Liu Y. Curcumin upregulates transcription factor Nrf2, HO-1 expression and protects rat brains against focal ischemia. Brain Res 2009;1282:133-41. https://doi.org/10.1016/j.brainres.2009.05.009
  30. Shutenko Z, Henry Y, Pinard E, Seylaz J, Potier P, Berthet F, Girard P, Sercombe R. Influence of the antioxidant quercetin in vivo on the level of nitric oxide determined by electron paramagnetic resonance in rat brain during global ischemia and reperfusion. Biochem Pharmacol 1999;57:199-208. https://doi.org/10.1016/S0006-2952(98)00296-2
  31. Nabavi SF, Daglia M, Moghaddam AH, Habtemariam S, Nabavi SM. Curcumin and liver disease: from chemistry to medicine. Compr Rev Food Sci Food Saf 2014;13:62-77. https://doi.org/10.1111/1541-4337.12047
  32. Nabavi SM, Nabavi SF, Eslami S, Moghaddam AH. In vivo protective effects of quercetin against sodium fluoride-induced oxidative stress in the hepatic tissue. Food Chem 2012;132:931-5. https://doi.org/10.1016/j.foodchem.2011.11.070
  33. Nabavi SF, Nabavi SM, Mirzaei M, Moghaddam AH. Protective effect of quercetin against sodium fluoride induced oxidative stress in rat's heart. Food Funct 2012;3:437-41. https://doi.org/10.1039/c2fo10264a
  34. Curti V, Capelli E, Boschi F, Nabavi SF, Bongiorno AI, Habtemariam S, Nabavi SM, Daglia M. Modulation of human miR-17-3p expression by methyl 3-O-methyl gallate as explanation of its in vivo protective activities. Mol Nutr Food Res 2014;58:1776-84. https://doi.org/10.1002/mnfr.201400007
  35. Slemmer JE, Shacka JJ, Sweeney M, Weber JT. Antioxidants and free radical scavengers for the treatment of stroke, traumatic brain injury and aging. Curr Med Chem 2008;15:404-14. https://doi.org/10.2174/092986708783497337
  36. Lakhan SE, Kirchgessner A, Hofer M. Inflammatory mechanisms in ischemic stroke: therapeutic approaches. J Transl Med 2009;7:97-107. https://doi.org/10.1186/1479-5876-7-97
  37. Nabavi SM, Marchese A, Izadi M, Curti V, Daglia M, Nabavi SF. Plants belonging to the genus thymus as antibacterial agents: from farm to pharmacy. Food Chem 2015;173:339-47. https://doi.org/10.1016/j.foodchem.2014.10.042
  38. Nabavi SF, Nabavi SM, Moghaddam AH, Naqinezhad A, Bigdellou R, Mohammadzadeh S. Protective effects of Allium paradoxum against gentamicin-induced nephrotoxicity in mice. Food Funct 2012;3:28-9. https://doi.org/10.1039/C1FO10173K
  39. Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Eslami B, Jafari N. In vitro antioxidant and antihemolytic activities of hydroalcoholic extracts of Allium scabriscapum Boiss. & Ky. aerial parts and bulbs. Int J Food Prop 2013;16:713-22. https://doi.org/10.1080/10942912.2011.565902
  40. Alinezhad H, Azimi R, Zare M, Ebrahimzadeh MA, Eslami S, Nabavi SF, Nabavi SM. Antioxidant and antihemolytic activities of ethanolic extract of flowers, leaves, and stems of Hyssopus officinalis L. Var. angustifolius. Int J Food Prop 2013;16:1169-78. https://doi.org/10.1080/10942912.2011.578319
  41. Nabavi SF, Nabavi SM, Setzer WN, Nabavi SA, Nabavi SA, Ebrahimzadeh MA. Antioxidant and antihemolytic activity of lipid-soluble bioactive substances in avocado fruits. Fruits 2013;68:185-93. https://doi.org/10.1051/fruits/2013066
  42. Nabavi SF, Russo GL, Daglia M, Nabavi SM. Role of quercetin as an alternative for obesity treatment: You are what you eat! Food Chem 2015;179:305-10. https://doi.org/10.1016/j.foodchem.2015.02.006
  43. Nabavi SF, Nabavi SM, Ebrahimzadeh MA, Jafari N, Yazdanpanah S. Biological activities of freshwater algae, Spirogyra singularis Nordstedt. J Aquat Food Prod Technol 2013;22:58-65. https://doi.org/10.1080/10498850.2011.624292
  44. Visioli F, Borsani L, Galli C. Diet and prevention of coronary heart disease: the potential role of phytochemicals. Cardiovasc Res 2000;47:419-25. https://doi.org/10.1016/S0008-6363(00)00053-5
  45. Hertog MG, Feskens EJ, Hollman PC, Katan MB, Kromhout D. Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 1993;342:1007-11. https://doi.org/10.1016/0140-6736(93)92876-U
  46. Park JD, Rhee DK, Lee YH. Biological activities and chemistry of saponins from Panax ginseng CA Meyer. Phytochem Rev 2005;4:159-75. https://doi.org/10.1007/s11101-005-2835-8
  47. Radad K, Gille G, Liu L, Rausch W-D. Use of ginseng in medicine with emphasis on neurodegenerative disorders. J Pharmacol Sci 2006;100:175-86. https://doi.org/10.1254/jphs.CRJ05010X
  48. Choi K-T. Botanical characteristics, pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta Pharm Sin 2008;29:1109-18. https://doi.org/10.1111/j.1745-7254.2008.00869.x
  49. Wang J, Li S, Fan Y, Chen Y, Liu D, Cheng H, Gao X, Zhou Y. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer. J Ethnopharmacol 2010;130:421-3. https://doi.org/10.1016/j.jep.2010.05.027
  50. Coon JT, Ernst E. Panax ginseng. Drug Saf 2002;25:323-44. https://doi.org/10.2165/00002018-200225050-00003
  51. Yun TK. Panax ginseng-a non-organ-specific cancer preventive? Lancet Oncol 2001;2:49-55. https://doi.org/10.1016/S1470-2045(00)00196-0
  52. Zhou W, Chai H, Lin PH, Lumsden AB, Yao Q, Chen C. Molecular mechanisms and clinical applications of ginseng root for cardiovascular disease. Med Sci Monit 2004;10:RA187-192.
  53. Vuksan V, Sung MK, Sievenpiper JL, Stavro PM, Jenkins AL, Di Buono M, Lee KS, Leiter LA, Nam KY, Arnason JT, et al. Korean red ginseng (Panax ginseng) improves glucose and insulin regulation in well-controlled, type 2 diabetes: results of a randomized, double-blind, placebo-controlled study of efficacy and safety. Nutr Metab Cardiovasc Dis 2008;18:46-56. https://doi.org/10.1016/j.numecd.2006.04.003
  54. Kim JH. Cardiovascular diseases and Panax ginseng: a review on molecular mechanisms and medical applications. J Ginseng Res 2012;36:16-26. https://doi.org/10.5142/jgr.2012.36.1.16
  55. Shibata S, Fujita M, Itokawa H, Tanaka O, Ishii T. Studies on the constituents of Japanese and Chinese crude drugs: XI. Panaxadiol, a sapogenin of ginseng roots. Chem Pharm Bull 1963;11:759-61. https://doi.org/10.1248/cpb.11.759
  56. Fuzzati N. Analysis methods of ginsenosides. J Chromatogr B 2004;812:119-33. https://doi.org/10.1016/S1570-0232(04)00645-2
  57. Zhu J, Jiang Y, Wu L, Lu T, Xu G, Liu X. Suppression of local inflammation contributes to the neuroprotective effect of ginsenoside Rb1 in rats with cerebral ischemia. Neuroscience 2012;202:342-51. https://doi.org/10.1016/j.neuroscience.2011.11.070
  58. Park E-K, Choo M-K, Han MJ, Kim D-H. Ginsenoside Rh1 possesses antiallergic and anti-inflammatory activities. Int Arch Allergy Immunol 2004;133:113-20. https://doi.org/10.1159/000076383
  59. Chen XC, Zhu YG, Zhu LA, Huang C, Chen Y, Chen LM, Fang F, Zhou YC, Zhao CH. Ginsenoside Rg1 attenuates dopamine-induced apoptosis in PC12 cells by suppressing oxidative stress. EurJ Pharmacol 2003;473:1-7. https://doi.org/10.1016/S0014-2999(03)01945-9
  60. Fu Y, Ji LL. Chronic ginseng consumption attenuates age-associated oxidative stress in rats. J Nutr 2003;133:3603-9. https://doi.org/10.1093/jn/133.11.3603
  61. Chen X, Salwinski S, Lee TF. Extracts of Ginkgo biloba and ginsenosides exert cerebral vasorelaxation via a nitric oxide pathway. Clin Exp Pharmacol Physiol 1997;24:958-9. https://doi.org/10.1111/j.1440-1681.1997.tb02727.x
  62. Lu J-M, Yao Q, Chen C. Ginseng compounds: an update on their molecular mechanisms and medical applications. Curr Vasc Pharmacol 2009;7:293-302. https://doi.org/10.2174/157016109788340767
  63. He F, Guo R, Wu S-L, Sun M, Li M. Protective effects of ginsenoside Rb1 on human umbilical vein endothelial cells in vitro. J Cardiovasc Pharmacol 2007;50:314-20. https://doi.org/10.1097/FJC.0b013e3180cab12e
  64. Jin YR, Yu JY, Lee JJ, You SH, Chung JH, Noh JY, Im JH, Han XH, Kim TJ, Shin KS, et al. Antithrombotic and antiplatelet activities of Korean red ginseng extract. Basic Clin Pharmacol Toxicol 2007;100:170-5. https://doi.org/10.1111/j.1742-7843.2006.00033.x
  65. Jeon BH, Kim CS, Park KS, Lee JW, Park JB, Kim KJ, Kim SH, Chang SJ, Nam KY. Effect of Korea red ginseng on the blood pressure in conscious hypertensive rats. Gen Pharmacol Vasc Syst 2000;35:135-41. https://doi.org/10.1016/S0306-3623(01)00096-9
  66. Yamamoto M, Uemura T, Nakamura S, Uemiya M, Kumagai A. Serum HDL-cholesterol-increasing and fatty liver-improving actions of Panax ginseng in high cholesterol diet-fed rats with clinical effect on hyperlipidemia in man. Am J Chin Med 1983;11:96-101. https://doi.org/10.1142/S0192415X83000161
  67. Hong SY, Kim JY, Ahn HY, Shin J-H, Kwon O. Panax ginseng extract rich in ginsenoside protopanaxatriol attenuates blood pressure elevation in spontaneously hypertensive rats by affecting the Akt-dependent phosphorylation of endothelial nitric oxide synthase. J Agric Food Chem 2012;60:3086-91. https://doi.org/10.1021/jf204447y
  68. Ni H-X, Yu N-J, Yang X-H. The study of ginsenoside on $PPAR{\gamma}$ expression of mononuclear macrophage in type 2 diabetes. Mol Biol Rep 2010;37:2975-9. https://doi.org/10.1007/s11033-009-9864-0
  69. Ye R, Yang Q, Kong X, Han J, Zhang X, Zhang Y, Li P, Liu J, Shi M, Xiong L, et al. Ginsenoside Rd attenuates early oxidative damage and sequential inflammatory response after transient focal ischemia in rats. Neurochem Int 2011;58:391-8. https://doi.org/10.1016/j.neuint.2010.12.015
  70. Ye R, Li N, Han J, Kong X, Cao R, Rao Z, Zhao G. Neuroprotective effects of ginsenoside Rd against oxygen-glucose deprivation in cultured hippocampal neurons. Neurosci Res 2009;64:306-10. https://doi.org/10.1016/j.neures.2009.03.016
  71. Liu X, Wang L, Wen A, Yang J, Yan Y, Song Y, Liu X, Ren H, Wu Y, Li Z, et al. Ginsenoside-Rd improves outcome of acute ischaemic stroke-a randomized, double-blind, placebo-controlled, multicenter trial. Eur J Neurol 2012;19:855-63. https://doi.org/10.1111/j.1468-1331.2011.03634.x
  72. Attele AS, Wu JA, Yuan C-S. Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 1999;58:1685-93. https://doi.org/10.1016/S0006-2952(99)00212-9
  73. Lewis R, Wake G, Court G, Court JA, Pickering AT, Kim YC, Perry EK. Non-ginsenoside nicotinic activity in ginseng species. Phytother Res 1999;13:59-64. https://doi.org/10.1002/(SICI)1099-1573(199902)13:1<59::AID-PTR423>3.0.CO;2-K
  74. Shi Y, Sun C, Zheng B, Li Y, Wang Y. Simultaneous determination of nine ginsenosides in functional foods by high performance liquid chromatography with diode array detector detection. Food Chem 2010;123:1322-7. https://doi.org/10.1016/j.foodchem.2010.06.014
  75. Mihalov JJ, Marderosian AD, Pierce JC. DNA identification of commercial ginseng samples. J Agric Food Chem 2000;48:3744-52. https://doi.org/10.1021/jf000011b
  76. Lim W, Mudge KW, Vermeylen F. Effects of population, age, and cultivation methods on ginsenoside content of wild American ginseng (Panax quinquefolium). J Agric Food Chem 2005;53:8498-505. https://doi.org/10.1021/jf051070y
  77. Schlag EM, McIntosh MS. Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 2006;67:1510-9. https://doi.org/10.1016/j.phytochem.2006.05.028
  78. Yun TK, Lee YS, Lee YH, Kim SI, Yun HY. Anticarcinogenic effect of Panax ginseng CA Meyer and identification of active compounds. J Korean Med Sci 2001;16:S6-18. https://doi.org/10.3346/jkms.2001.16.S.S6
  79. Yuan C-S, Wu JA, Osinski J. Ginsenoside variability in American ginseng samples. Am J Clin Nutr 2002;75:600-1. https://doi.org/10.1093/ajcn/75.3.600
  80. Cheng L-Q, Kim MK, Lee J-W, Lee Y-J, Yang D-C. Conversion of major ginsenoside Rb1 to ginsenoside F2 by Caulobacter leidyia. Biotechnol Lett 2006;28:1121-7. https://doi.org/10.1007/s10529-006-9059-x
  81. Chi H, Ji G-E. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol Lett 2005;27:765-71. https://doi.org/10.1007/s10529-005-5632-y
  82. Hsu BY, Lu TJ, Chen CH, Wang SJ, Hwang LS. Biotransformation of ginsenoside Rd in the ginseng extraction residue by fermentation with lingzhi (Ganoderma lucidum). Food Chem 2013;141:4186-93. https://doi.org/10.1016/j.foodchem.2013.06.134
  83. Kim MK, Lee JW, Lee KY, Yang D. Microbial conversion of major ginsenoside rb-1 to pharmaceutically active minor Ginsenoside Rd. J Microbiol Seoul 2005;43:456-62.
  84. Son J-W, Kim H-J, Oh D-K. Ginsenoside Rd production from the major ginsenoside Rb1 by ${\beta}$-glucosidase from thermus caldophilus. Biotechnol Lett 2008;30:713-6. https://doi.org/10.1007/s10529-007-9590-4
  85. Yu H, Liu H, Zhang C, Tan D, Lu M, Jin F. Purification and characterization of gypenoside-${\alpha}$-l-rhamnosidase hydrolyzing gypenoside-5 into ginsenoside Rd. Process Biochem 2004;39:861-7. https://doi.org/10.1016/S0032-9592(03)00196-1
  86. Zhang C, Yu H, Bao Y, An L, Jin F. Purification and characterization of ginsenoside-${\alpha}$-arabinofuranase hydrolyzing ginsenoside Rc into Rd from the fresh root of Panax ginseng. Process Biochem 2002;37:793-8. https://doi.org/10.1016/S0032-9592(01)00275-8
  87. Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G. Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 2009;36:721-6. https://doi.org/10.1007/s10295-009-0542-y
  88. Zhao X, Gao L, Wang J, Bi H, Gao J, Du X, Zhou Y, Tai G. A novel ginsenoside $Rb_1$-hydrolyzing ${\beta}$-D-glucosidase from Cladosporium fulvum. Process Biochem 2009;44:612-8. https://doi.org/10.1016/j.procbio.2009.01.016
  89. Kochkin DV, Kachala VV, Shashkov AS, Chizhov AO, Chirva VY, Nosov AM. Malonyl-ginsenoside content of a cell-suspension culture of Panax japonicus var. repens. Phytochemistry 2013;93:18-26. https://doi.org/10.1016/j.phytochem.2013.03.021
  90. Wang J, Man S, Gao W, Zhang L, Huang L. Cluster analysis of ginseng tissue cultures, dynamic change of growth, total saponins, specific oxygen uptake rate in bioreactor and immuno-regulative effect of ginseng adventitious root. Ind Crops Prod 2013;41:57-63. https://doi.org/10.1016/j.indcrop.2012.04.005
  91. Ye R, Kong X, Yang Q, Zhang Y, Han J, Zhao G. Ginsenoside Rd attenuates redox imbalance and improves stroke outcome after focal cerebral ischemia in aged mice. Neuropharmacology 2011;61:815-24. https://doi.org/10.1016/j.neuropharm.2011.05.029
  92. Ye R, Zhang X, Kong X, Han J, Yang Q, Zhang Y, Chen Y, Li P, Liu J, Shi M, et al. Ginsenoside Rd attenuates mitochondrial dysfunction and sequential apoptosis after transient focal ischemia. Neuroscience 2011;178:169-80. https://doi.org/10.1016/j.neuroscience.2011.01.007
  93. Zhang Y, Zhou L, Zhang X, Bai J, Shi M, Zhao G. Ginsenoside-Rd attenuates TRPM7 and ASIC1a but promotes ASIC2a expression in rats after focal cerebral ischemia. Neurol Sci 2012;33:1125-31. https://doi.org/10.1007/s10072-011-0916-6
  94. Li XY, Liang J, Tang YB, Zhou JG, Guan YY. Ginsenoside Rd prevents glutamate-induced apoptosis in rat cortical neurons. Clin Exp Pharmacol Physiol 2010;37:199-204. https://doi.org/10.1111/j.1440-1681.2009.05286.x
  95. Zhang X, Shi M, Bjoras M, Wang W, Zhang G, Han J, Liu Z, Zhang Y, Wang B, Chen J, et al. Ginsenoside Rd promotes glutamate clearance by up-regulating glial glutamate transporter GLT-1 via PI3K/AKT and ERK1/2 pathways. Front Pharmacol 2013;4:152-60.
  96. Hu G, Wu Z, Yang F, Zhao H, Liu X, Deng Y, Shi M, Zhao G. Ginsenoside Rd blocks AIF mitochondrio-nuclear translocation and NF-${\kappa}B$ nuclear accumulation by inhibiting poly(ADP-ribose) polymerase-1 after focal cerebral ischemia in rats. Neurol Sci 2013;34:2101-6. https://doi.org/10.1007/s10072-013-1344-6
  97. Zhang X, Shi M, Ye R, Wang W, Liu X, Zhang G, Han J, Zhang Y, Wang B, Zhao J, et al. Ginsenoside Rd attenuates Tau protein phosphorylation via the PI3K/AKT/GSK-3${\beta}$ pathway after transient forebrain ischemia. Neurochem Res 2014:1-11.
  98. Liu X, Xia J, Wang L, Song Y, Yang J, Yan Y, Ren H, Zhao G. Efficacy and safety of ginsenoside-Rd for acute ischaemic stroke: a randomized, double-blind, placebo-controlled, phase II multicenter trial. Eur J Neurol 2009;16:569-75. https://doi.org/10.1111/j.1468-1331.2009.02534.x

Cited by

  1. Phytochemicals in Ischemic Stroke vol.18, pp.3, 2015, https://doi.org/10.1007/s12017-016-8403-0
  2. Phospholipid complexation of NMITLI118RT+: way to a prudent therapeutic approach for beneficial outcomes in ischemic stroke in rats vol.23, pp.9, 2016, https://doi.org/10.1080/10717544.2016.1212950
  3. A Role of Ginseng and Its Constituents in the Treatment of Central Nervous System Disorders vol.2016, pp.None, 2015, https://doi.org/10.1155/2016/2614742
  4. Cardioprotective Potentials of Plant-Derived Small Molecules against Doxorubicin Associated Cardiotoxicity vol.2016, pp.None, 2015, https://doi.org/10.1155/2016/5724973
  5. Vascular Contributions to Cognitive Impairment and Treatments with Traditional Chinese Medicine vol.2016, pp.None, 2016, https://doi.org/10.1155/2016/9627258
  6. 20( S )-Protopanaxadiol Phospholipid Complex: Process Optimization, Characterization, In Vitro Dissolution and Molecular Docking Studies vol.21, pp.10, 2016, https://doi.org/10.3390/molecules21101396
  7. Pharmacological Effects of Capparis spinosa L. vol.30, pp.11, 2015, https://doi.org/10.1002/ptr.5684
  8. YiQiFuMai Powder Injection Protects against Ischemic Stroke via Inhibiting Neuronal Apoptosis and PKC δ /Drp1-Mediated Excessive Mitochondrial Fission vol.2017, pp.None, 2017, https://doi.org/10.1155/2017/1832093
  9. Chlorogenic Acid and Mental Diseases: From Chemistry to Medicine vol.15, pp.4, 2015, https://doi.org/10.2174/1570159x14666160325120625
  10. Effects of the Jinan Red Ginseng Extract Treatment on Poloxamer 407-induced Hyperlipidemia in Rabbits vol.30, pp.6, 2015, https://doi.org/10.7732/kjpr.2017.30.6.601
  11. Opportunities for the repurposing of PARP inhibitors for the therapy of non-oncological diseases : PARP inhibitors for repurposing vol.175, pp.2, 2018, https://doi.org/10.1111/bph.13748
  12. Multi-Target Protective Effects of Gintonin in 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine-Mediated Model of Parkinson’s Disease via Lysophosphatidic Acid Receptors vol.9, pp.None, 2015, https://doi.org/10.3389/fphar.2018.00515
  13. Neuroprotective Effects of a Traditional Multi-Herbal Medicine Kyung-Ok-Ko in an Animal Model of Parkinson's Disease: Inhibition of MAPKs and NF-κB Pathways and Activation of Keap1-Nrf2 Pathway vol.9, pp.None, 2015, https://doi.org/10.3389/fphar.2018.01444
  14. Efficacy and Mechanism of Panax Ginseng in Experimental Stroke vol.13, pp.None, 2015, https://doi.org/10.3389/fnins.2019.00294
  15. Natural Products in Alzheimer’s Disease Therapy: Would Old Therapeutic Approaches Fix the Broken Promise of Modern Medicines? vol.24, pp.8, 2015, https://doi.org/10.3390/molecules24081519
  16. The Role of Traditional Chinese Herbal Medicines and Bioactive Ingredients on Ion Channels: A Brief Review and Prospect vol.18, pp.4, 2019, https://doi.org/10.2174/1871527317666181026165400
  17. Nrf2 Plays an Essential Role in Long-Term Brain Damage and Neuroprotection of Korean Red Ginseng in a Permanent Cerebral Ischemia Model vol.8, pp.8, 2019, https://doi.org/10.3390/antiox8080273
  18. Microbial Conversion of Protopanaxadiol-Type Ginsenosides by the Edible and Medicinal Mushroom Schizophyllum commune: A Green Biotransformation Strategy vol.4, pp.8, 2019, https://doi.org/10.1021/acsomega.9b01001
  19. Supramolecular host-guest interactions of pseudoginsenoside F11 with β- and γ-cyclodextrin: Spectroscopic/spectrometric and computational studies vol.1195, pp.None, 2015, https://doi.org/10.1016/j.molstruc.2019.05.134
  20. Therapeutic Effect of Ginsenoside Rd on Experimental Autoimmune Encephalomyelitis Model Mice: Regulation of Inflammation and Treg/Th17 Cell Balance vol.2020, pp.None, 2020, https://doi.org/10.1155/2020/8827527
  21. Factors and Molecular Mechanisms Influencing the Protein Synthesis, Degradation and Membrane Trafficking of ASIC1a vol.8, pp.None, 2015, https://doi.org/10.3389/fcell.2020.596304
  22. Impact of Natural Compounds on Neurodegenerative Disorders: From Preclinical to Pharmacotherapeutics vol.9, pp.4, 2015, https://doi.org/10.3390/jcm9041061
  23. The Advances on the Protective Effects of Ginsenosides on Myocardial Ischemia and Ischemia-Reperfusion Injury vol.20, pp.16, 2020, https://doi.org/10.2174/1389557520666200619115444
  24. Ginsenoside Rd Attenuates Tau Phosphorylation in Olfactory Bulb, Spinal Cord, and Telencephalon by Regulating Glycogen Synthase Kinase 3β and Cyclin-Dependent Kinase 5 vol.2021, pp.None, 2015, https://doi.org/10.1155/2021/4485957
  25. Panax Ginseng C.A.Mey. as Medicine: The Potential Use of Panax Ginseng C.A.Mey. as a Remedy for Kidney Protection from a Pharmacological Perspective vol.12, pp.None, 2015, https://doi.org/10.3389/fphar.2021.734151
  26. Bifunctional Self‐Powered Drug Delivery System to Promote the Release and Transdermal Delivery of Polar Molecules vol.6, pp.14, 2015, https://doi.org/10.1002/slct.202100835
  27. Potential Nutrients from Natural and Synthetic Sources Targeting Inflammaging-A Review of Literature, Clinical Data and Patents vol.13, pp.11, 2015, https://doi.org/10.3390/nu13114058
  28. Growth and bioactive phytochemicals of Panax ginseng sprouts grown in an aeroponic system using plasma-treated water as the nitrogen source vol.11, pp.1, 2015, https://doi.org/10.1038/s41598-021-82487-8