• 제목/요약/키워드: membrane analysis

검색결과 2,373건 처리시간 0.033초

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • 제12권1호
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

표면개질을 이용하여 붕소 제거율이 향상된 역삼투막의 제조 (Fabrication of Reverse Osmosis Membrane with Enhanced Boron Rejection Using Surface Modification)

  • 이덕로;김종학;권세이;이혜진;김인철
    • 멤브레인
    • /
    • 제28권2호
    • /
    • pp.96-104
    • /
    • 2018
  • 해수담수화의 빠른 증가와 함께 붕소 제거에 대한 중요성이 상승하고 있다. 본 연구는 표면개질 시 친수성 화합물을 이용하여 수투과량을 최대한 막고 붕소 제거율을 높이기 위한 연구를 진행하였다. 첫째로, Control polyamide 역삼투막을 얻기 위해 M-phenylenediamine (MPD)와 trimesoyl chloride (TMC)를 Polysulfone 한외여과막에 계면중합을 시켜 polyamide 활성층을 제조하였다. 다음으로, Control polyamide 역삼투막에 표면개질을 진행시켜 D-gluconic acid (DGCA)와 D-gluconic acid sodium salt (DGCA-Na)를 glutaraldehyde (GA)와 hydrochloric acid (HCl)을 이용하여 합성시켰다. 합성된 역삼투막의 표면 분석을 위해 XPS 분석을 진행하였으며, DGCA 및 DGCA-Na 화합물과의 반응이 되었음을 확인하였다. 또한, morphology 측정을 위해 FE-SEM과 AFM 분석을 진행하였으며, polyamide 활성층 형성 및 표면 거칠기를 확인할 수 있었다. 수투과량의 경우, 표면개질을 진행한 역삼투막은 10 GFD 수준이거나 그 이하의 값을 가졌다. 하지만, DGCA 및 DGCA-Na 화합물과 표면개질을 진행한 역삼투막의 붕소 제거율은 94.38, 94.64%로, Control polyamide 역삼투막보다 각각 12.03, 12.29 %p만큼 큰 값을 가지는 것을 확인할 수 있었다.

가시광선 조사에 의한 이미지 추출법을 이용한 막 오염 모니터링 연구 (Study for Membrane Fouling Monitering Using Image Extraction by Visible Light Irradiation)

  • 박아름이;서미래;남승은;김범식;박호범;김인철;박유인
    • 멤브레인
    • /
    • 제21권2호
    • /
    • pp.171-176
    • /
    • 2011
  • 분리막을 이용한 수처리 공정에서 유입 수에 함유된 부유물질이나 기타 오염물질이 막 표면 또는 내부에 축적 흡착 등의 막 오염현상으로 인해 막 성능 감소와 함께 막 분리 공정에 큰 영향을 미치게 된다. 본 연구에서는 막 표면에서의 막 오염현상을 실시간으로 모니터링 할 수 있는 기술을 연구하였다. 투명한 오염물질에 의한 분리막 표면 오염을 측정하기 위해 막 표면에 360 nm 파장의 가시광선을 조사하여 이미지를 R. G. B 값으로 추출하여 막의 오염현상을 실시간으로 모니터링 하였다. 추출된 이미지 중 400~499 nm 파장영역인 B 값이 가장 강도가 강하게 나타났다. 막 오염정도의 변화를 이미지의 강도 차이로 관찰함으로써 실시간 분석이 가능함을 확인하였다.

쉘 요소를 이용한 박판성형공정의 불량 예측 평가 (Prediction evaluation of problems happened of Sheet Metal Forming Process Using Shell Element)

  • 고형훈;이찬호;강동규;설남기;이광식;정동원
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.481-484
    • /
    • 2005
  • The AutoForm previously used the membrane element and it accomplished sheet metal forming analysis. The membrane analysis has been widely applied to various sheet metal forming processes because of its time effectiveness. However, it's well known that the membrane analysis can not provide correct information for the processes which have considerable bending effects. In this research it tried to compare the analysis results which use the shell element which is applied newly in the AutoForm commercial software with actual experimental results. The shell element is compromise element between continuum element and membrane element. The Finite element method by using shell element is the most efficient numerical method. From this research, it is known that FEA by using shell element can predict accurately the problems happened in actual experimental auto-body panel.

  • PDF

직교이방성을 고려한 Barrel Vault형 지붕 막구조물의 비선형 구조해석에 관한 연구 (A Study on the Nonlinear Structural Analysis of Barrel Vault-Typed Membrane Roof Structures Considering the Orthotropic Material)

  • 김승덕;정을석;백인성
    • 한국공간구조학회논문집
    • /
    • 제5권1호
    • /
    • pp.91-98
    • /
    • 2005
  • 연성구조물의 일종인 막구조물은 대공간 구조물을 보다 효과적으로 구축할 수 있다. 연성구조물은, 축강성은 강하고 휨강성이 매우 작은 재료를 주 구조재로 사용하므로 초기강성에 매우 약한 구조체이다. 초기강성을 확보하기 위해서는 초기응력의 도입이 필수적이고, 초기강성을 갖기 전에는 불안정현상을 나타내지만, 초기강성의 도입과 함께 안정상태가 된다. 초기 불안정 구조물에 초기강성을 도입함으로써 야기되는 대변형 현상을 파악하기 위해서는 기하학적 비선형을 고려한 형상해석이 요구된다. 본 연구에서는 비선형 해석프로그램인 NASS를 이용하여 해석을 수행한다. 해석모델은 Barrel Vault형 지붕 막구조물을 대상으로 하며, 직교이방성을 고려한 형상해석 및 응력-변형해석을 수행한 후 안정성을 검토한다.

  • PDF

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Synechocystis sp. PCC6803을 이용한 Photosystem I- mutants의 색소 및 틸라코이드막 단백질 분석 (Analysis of Pigments and Thylakoid Membrane Proteins in Photosystem I - Mutants from Synechocystis sp. PCC6803)

  • 전은경;장남기
    • 아시안잔디학회지
    • /
    • 제11권1호
    • /
    • pp.45-58
    • /
    • 1997
  • Pigments and thylakoid membrane proteins were investigated in wild type and PS I- mutants from Synechocystis sp. PCC6803 Comparing morphological features, B2 was less fluorescent than the other strains. The contents of chlorophyll a were propotional to the FNR activity in thylakoid membrane. The FNR activity of mutants was lower than that of wild type. In the result of pigments analysis, mutants had smaller cholophyll a than that of wild type. The major carotenoid was found to he $\beta$-caroene, but aeaxanthin was barely detected in thylakoid membrane of mutants. The polypeptide, 14.8kD was detected by electrophoresis in mutants. It was considered to be the modification of 15.4kD in wild type. Membrane polypeptides of 17.6 and 19.7kD were not detected in mutants. In the result of western blotting, subunit I was detected in all strains, but subunit II was barely detected in mutants. Subunit II was not detected in B2 at all. In view of the results so far achieved, the changes of contents of chlorophyll and zeaxanthin were affected by the defficiency or modification of functional domain in subunit I. Also the modification in subunit I affected the subunit II- binding site in PS I. As the result, efficiency of photosynthesis was decreased. Key words: Synechoystis sp. PCC6803, PS I - mutant, Photosynthetic efficiency, Pigment,Thylakoid membrane proteins, Subunit I, II.

  • PDF

이산화탄소 분리를 위한 중공사막 모듈에서의 물질전달 거동 (On the Mass Transfer Behaviors in Hollcw-Fiber Membrane Modules for $CO_2$ Separation)

  • 전명석;김영목;이규호
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 1994년도 춘계 총회 및 학술발표회
    • /
    • pp.51-52
    • /
    • 1994
  • High permeability, selectivity and stability are the basic properties also required for membrane gas separations. The $CO_2$ separation by liquid membranes has been developed as a new technique to improve the permeability and selectivity of polymeric membranes. Sirkar et al.(1) have atlempted the hollow-fiber contained liquid membrane technique under four different operational modes, and permeation models have been proposed for all modes. Compared to a conventional liquid membrane, the diffusional resistance decreased by the work of Teramoto et al.(2), who referred to a moving liquid membrane. Recently, Shelekhin and Beckman (3) considered the possibility of combining absorption and membrane separation processes in one integrated system called a membrane absorber. Their analysis could be predicted effectively the performance of flat sheet membrane, however, there are restrictions for considering a flow effect. The gas absorption rate is determined by both an interfacial area and a mass transfer coefficient. It can be easily understood that although the mass transfer coefficients in hollow fiber modules are smaller than in conventional contactors, the substantial increase of the interfacial area can result in a more efficient absorber (4). In order to predict a performance in the general system of hollow-fiber membrane absorber, a gas-liquid mass transfor should be investigated inevitably. The influence of liquid velocity on both a mass transfer and a performance will be described, and then compared with experimental results. A present study is attempted to provide the fundamentals for understanding aspects of promising a hollow-fiber membrane absorber.

  • PDF

Recovery of ammonia from wastewater by liquid-liquid membrane contactor: A review

  • Jang, Yoonmi;Lee, Wooram;Park, Jaebeom;Choi, Yongju
    • Membrane and Water Treatment
    • /
    • 제13권3호
    • /
    • pp.147-166
    • /
    • 2022
  • Liquid-liquid membrane contactor (LLMC), a device that exchanges dissolved gas molecules between the two sides of a hydrophobic membrane through membrane pores, can be employed to extract ammoniacal nitrogen from a feed solution, which is transported across the membrane and accumulated in a stripping solution. This LLMC process offers the promise of improving the sustainability of the global nitrogen cycle by cost-effectively recovering ammonia from wastewater. Despite recent technological advances in LLMC processes, a comprehensive review of their feasibility for ammonia recovery is rarely found in the literature. Our paper aims to close this knowledge gap, and in addition to analyze the challenges and provide potential solutions for improvement. We begin with discussions on the operational principles of the LLMC process for ammonia recovery and membrane types and membrane configurations commonly used in the process. We then assess the performance of the process by reviewing publications that demonstrate its practical application. Challenges involved in the implementation of the LLMC process, such as membrane fouling, membrane wetting, and chemical requirements, are presented, along with discussions on potential strategies to address each. These strategies, including membrane modification, hybrid process design, and process optimization based on cost-benefit analysis, guide the reader to identify key areas of future research and development.

입구 온도에 따른 나피온 막 가습기 성능의 비선형적 변화 (Nonlinear variation of performance for a NAFION membrane humidifier with inlet temperature elevation)

  • 황준영;강경태;강희석;김종훈
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2010년도 추계학술대회 초록집
    • /
    • pp.78.2-78.2
    • /
    • 2010
  • Effect of temperature elevation of inlet air on performance of a membrane humidifier for PEMFC vehicle application was investigated both experimentally and numerically. A shell-and-tube typed gas-to-gas humidifier with Nafion membrane was tested. The experimental result showed that water transfer varies nonlinearly with the temperature elevation. Numerical analysis based on detailed modeling is also conducted on a single tube geometry to explain this nonlinear behavior. The simulation revealed that the local water flux varies nolineary and dramatically along the tube. Analysis is based on competing role of temperature increase and relative humidity decrease, both of which seriously affect water conductivity of the membrane.

  • PDF