Browse > Article
http://dx.doi.org/10.12989/mwt.2021.12.1.023

Removal of reactive black 5 dye by using polyoxometalate-membrane  

Topaloglu, Ali Kemal (Department of Environmental Engineering, Zonguldak Bulent Ecevit University)
Yildirim, Yilmaz (Department of Environmental Engineering, Zonguldak Bulent Ecevit University)
Publication Information
Membrane and Water Treatment / v.12, no.1, 2021 , pp. 23-35 More about this Journal
Abstract
A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.
Keywords
polyoxometalates; membrane; adsorption; dye removal; reactive black;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Xin, S., Zeng, Z., Zhou, X., Luo, W., Shi, X., Wang, Q., Deng, H. and Du, Y. (2017), "Recyclable saccharomyces cerevisiae loaded nanofibrous mats with sandwich structure constructing via bio-electrospraying for heavy metal removal", J. Hazard. Mater., 324, 365-372. https://doi.org/10.1016/j.jhazmat.2016.10.070.   DOI
2 Mahboub, M.N., Jafari, Z. and Khojasteh, Y. (2020), "Cost-effective polyvinylchloride- based adsorbing membrane for cationic dye removal", Membr. Water Treat., 2, 131-139. https://doi.org/10.12989/mwt.2020.11.2.131.   DOI
3 Muller, A., Krickemeyer, E., Meyer, J., Bogge, H., Peters, F., Plass, W., Diemann, E., Dillinger, S., Nonnenbruch, F., Randerath, M. and Menke, C. (1995), "[Mo154(NO)14O420(OH)28(H2O)70](25±5): A water‐soluble big wheel with more than 700 atoms and a relative molecular mass of about 24000", Angew. Chem. Int. Ed., 34, 2122-2124. https://doi.org/10.1002/anie.199521221.   DOI
4 Munagapati, V.S., Yarramuthi, V., Kim, Y., Lee, K.M. and Kim, D.S. (2018), "Removal of anionic dyes (reactive black 5 and congo red) from aqueous solutions using banana peel powder as an adsorbent", Ecotoxicol. Environ. Saf., 148, 601-607. https://doi.org/10.1016/j.ecoenv.2017.10.075.   DOI
5 Nesic, A.R., Velickovic, S.J. and Antonovic, D.G. (2012), "Characterization of chitosan/montmorillonite membranes as adsorbents for Bezactiv Orange V-3R dye", J. Hazard. Mater., 209, 256-263. https://doi.org/10.1016/j.jhazmat.2012.01.020.   DOI
6 Ozer, A. and Dursun, G. (2007), "Removal of methylene blue from aqueous solution by dehydrated wheat bran carbon", J. Hazard. Mater., 146(1-2), 262-269. https://doi.org/10.1016/j.jhazmat.2006.12.016.   DOI
7 Patel, S. and Hota, G. (2014), "Adsorptive removal of malachite green dye by functionalized electrospun PAN nanofibers membrane", Fibers Polym., 15(11), 2272-2282. https://doi.org/10.1007/s12221-014-2272-7.   DOI
8 Putaj, P. and Lefebvre, F. (2011), "Polyoxometalates containing late transition and noble metal atoms", Coord. Chem. Rev., 255(15-16), 1642-1685. https://doi.org/10.1016/j.ccr.2011.01.030.   DOI
9 Xiong, X., Jianguo, B., Hassan, O.S., Hui, G., Yu, Z. and Hong, W. (2016), "Study for adsorption behaviors of emulsion oil on a novel ZrO2/PVDF modified membrane", Desal. Water Treat., 57, 11736-11745. https://doi.org/10.1080/19443994.2015.1044918.   DOI
10 Yang, Y., Wang, G., Wang, B., Li, Z., Jia, X., Zhou, Q. and Zhao, Y. (2011), "Biosorption of Acid Black 172 and Congo Red from aqueous solution by nonviable Penicillium YW 01: Kinetic study, equilibrium isotherm and artificial neural network modeling", Bioresour. Technol., 102, 828-834. https://doi.org/10.1016/j.biortech.2010.08.125.   DOI
11 Yao, L., Zhang, L.Z., Wang, R., Loh, C.H. and Dong, Z.L. (2013), "Fabrication of catalytic membrane contactors based on polyoxometalates and polyvinylidene fluoride intended for degrading phenol in wastewater under mild conditions", Sep. Purif. Technol., 118, 162-169. https://doi.org/10.1016/j.seppur.2013.06.029.   DOI
12 Yao, L., Lua, S.K., Zhang, L., Wang, R. and Dong, Z.L. (2014), "Dye removal by surfactant encapsulated polyoxometalates", J. Hazard. Mater., 280, 428-435. https://doi.org/10.1016/j.jhazmat.2014.08.026.   DOI
13 Yao, L., Zhang, L., Wang, R., Chou, S. and Dong, Z.L. (2016), "A new integrated approach for dye removal from wastewater by polyoxometalates functionalized membranes", J. Hazard. Mater., 301, 462-470. https://doi.org/10.1016/j.jhazmat.2015.09.027.   DOI
14 Yildirim, Y. and Topaloglu, A.K. (2018), "POM based catalytic membrane contactor preparing and characterizing", MSU J. Sci., 6, 539-544. https://doi.org/10.18586/msufbd.459266.
15 Roesink, H.D.W., Beerlage, M.A.M., Potman, W., Van Den Boomgaard, T., Mulder, M.H.V. and Smolders, C.A. (1991), "Characterization of new membrane materials by means of fouling experiments Adsorption of bsa on polyetherimidepolyvinylpyrrolidone membranes", Colloids Surf., 55, 231-243. https://doi.org/10.1016/0166-6622(91)80095-6.   DOI
16 Rabbani, M., Seghatoleslami, Z.S. and Rahimi, R. (2017), "Selective adsorption of organic dye methylene blue by Cs4H2PMo11FeO40·6H2O in presence of methyl orange and Rhodamine-B", J. Mol. Struct., 1146, 113-118. https://doi.org/10.1016/j.molstruc.2017.05.134.   DOI
17 Rache, M.L., Garcia, A.R., Zea, H.R., Silva, A.M.T., Madeira, L.M. and Ramirez, J.H. (2014), "Azo-dye orange II degradation by the heterogeneous Fenton-like process using a zeolite Y-Fe catalyst-Kinetics with a model based on the Fermi's equation", Appl. Catal. B., 146, 192-200. https://doi.org/10.1016/j.apcatb.2013.04.028.   DOI
18 Rajabi, M., Mirza, B., Mahanpoor, K., Mirjalili, M., Najafi, F., Moradi, O., Sadegh, H., Shahryari-ghoshekandi, R., Asif, M., Tyagi, I., Agarwal, S. and Gupta, V.K. (2016), "Adsorption of malachite green from aqueous solution by carboxylate group functionalized multi-walled carbon nanotubes: Determination of equilibrium and kinetics parameters", J. Ind. Eng. Chem., 34, 130-138. https://doi.org/10.1016/j.jiec.2015.11.001.   DOI
19 Shao, L., Cheng, X.Q., Liu, Y., Quan, S., Ma, J., Zhao, S.Z. and Wang, K.Y. (2013), "Newly developed nanofiltration (NF) composite membranes by interfacial polymerization for Safranin O and Aniline blue removal", J. Membr. Sci., 430, 96-105. https://doi.org/10.1016/j.memsci.2012.12.005.   DOI
20 Yu, S., Liu, M., Ma, M., Qi, M., Lu, Z. and Gao, C. (2010), "Impacts of membrane properties on reactive dye removal from dye/salt mixtures by asymmetric cellulose acetate and composite polyamide nanofiltration membranes", J. Membr. Sci., 350, 83-91. https://doi.org/10.1016/j.memsci.2009.12.014.   DOI
21 Zhang, X., Chen, M., Yu, Y., Yang, T. and Wang, J. (2011), "Polyelectrolyte-modified multi-walled carbon nanotubes for the adsorption of chromium(vi)", Anal. Methods., 3(2), 457-462. https://doi.org/10.1039/c0ay00621a.   DOI
22 Zhang, B., Yu, S., Zhu, Y., Shen, Y., Gao, X., Shi, W. and Hwa Tay, J. (2020), "Adsorption mechanisms of crude oil onto polytetrafluoroethylene membrane: Kinetics and isotherm, and strategies for adsorption fouling control", Sep. Purif. Technol., 235, 116212. https://doi.org/10.1016/j.seppur.2019.116212.   DOI
23 Zhao, S., Wang, X. and Huo, M. (2010), "Catalytic wet air oxidation of phenol with air and micellar molybdovanadophosphoric polyoxometalates under room condition", Appl. Catal. B., 97, 127-134. https://doi.org/10.1016/j.apcatb.2010.03.032.   DOI
24 Zheng, H., Liu, D., Zheng, Y., Liang, S. and Liu, Z. (2009), "Sorption isotherm and kinetic modeling of aniline on Cr-bentonite", J. Hazard. Mater., 167(1-3), 141-147. https://doi.org/10.1016/j.jhazmat.2008.12.093.   DOI
25 Vakili, M., Rafatullah, M., Salamatinia, B., Abdullah, A.Z., Ibrahim, M.H., Tan, K.B., Gholami, Z. and Amouzgar, P. (2014), "Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: A review", Carbohydr. Polym., 113, 115-130. https://doi.org/10.1016/j.carbpol.2014.07.007.   DOI
26 Tangestaninejad, S., Moghadam, M., Mirkhani, V., Mohammadpoor-Baltork, I. and Salavati, H. (2010), "Vanadium-containing polyphosphomolybdate immobilized on TiO2 nanoparticles: A recoverable and efficient catalyst for photochemical, sonochemical and photosonochemical degradation of dyes under irradiation of UV light", J. Iran. Chem. Soc. 7, 161-174. https://doi.org/10.1007/bf03246195.   DOI
27 Thirumoorthy, K. and Krishna, S.K. (2020), "Removal of cationic and anionic dyes from aqueous phase by Ball clay - Manganese dioxide nanocomposites", J. Environ. Chem. Eng., 8, 103582. https://doi.org/10.1016/j.jece.2019.103582.   DOI
28 Tsigdinos, G.A. and Hallada, C.J. (1968), "Molybdovanadophosphoric acids and their salts. I. Investigation of methods of preparation and characterization", Inorg. Chem., 7, 437-441. https://doi.org/10.1021/ic50061a009.   DOI
29 Vakili, M., Rafatullah, M., Salamatinia, B., Hakimi, M. and Zuhairi, A. (2015), "Elimination of reactive blue 4 from aqueous solutions using 3-aminopropyl triethoxysilane modified chitosan beads", Carbohydr. Polym., 132, 89-96. https://doi.org/10.1016/j.carbpol.2015.05.080.   DOI
30 Vakili, M., Rafatullah, M., Hakimi, M., Zuhairi, A., Salamatinia, B. and Gholami, Z. (2016), "Chitosan hydrogel beads impregnated with hexadecylamine for improved reactive blue 4 adsorption", Carbohydr. Polym., 137, 139-146. http://dx.doi.org/10.1016/j.carbpol.2015.09.017.   DOI
31 Weber, W.J. and Morris, J.C. (1963), "Kinetics of adsorption on carbon from solution", Am. Soc. Civ. Eng., 89, 31-60.
32 Vakili, M., Rafatullah, M., Hakimi, M., Zuhairi, A., Gholami, Z. and Salamatinia, B. (2017), "Enhancing reactive blue 4 adsorption through chemical modification of chitosan with hexadecylamine and 3-aminopropyl triethoxysilane", J. Water Process Eng., 15, 49-54. https://doi.org/10.1016/j.jwpe.2016.06.005.   DOI
33 Wang, X., Liu, Z., Ye, X., Hu, K., Zhong, H., Yu, J., Jin, M. and Guo, Z. (2014), "A facile one-step approach to functionalized graphene oxide-based hydrogels used as effective adsorbents toward anionic dyes", Appl. Surf. Sci., 308, 82-90. https://doi.org/10.1016/j.apsusc.2014.04.103.   DOI
34 Wang, X., Li, Y., Li, H. and Yang, C. (2016), "Chitosan membrane adsorber for low concentration copper ion removal", Carbohydr. Polym., 146, 274-281. https://doi.org/10.1016/j.carbpol.2016.03.055.   DOI
35 Wong, S., Tumari, H.H., Ngadi, N., Mohamed, N.B., Hassan, O., Mat, R. and Saidina Amin, N.A. (2019), "Adsorption of anionic dyes on spent tea leaves modified with polyethyleneimine (PEISTL)", J. Clean. Prod., 206, 394-406. https://doi.org/10.1016/j.jclepro.2018.09.201.   DOI
36 Anbia, M., Hariri, S.A. and Ashrafizadeh, S.N. (2010), "Adsorptive removal of anionic dyes by modified nanoporous silica SBA-3", Appl. Surf. Sci., 256(10), 3228-3233. https://doi.org/10.1016/j.apsusc.2009.12.010.   DOI
37 Ahmad, A., Mohd-setapar, S.H., Chuong, S. and Khatoon, A. (2015), "Recent advances in new generation dye removal technologies: Novel search for approaches to reprocess wastewater", RSC Adv., 5(39), 30801-30818. https://doi.org/10.1039/C4RA16959J.   DOI
38 Ahmed, M.J., Islam, M.A., Asif, M. and Hameed, B.H. (2017), "Human hair-derived high surface area porous carbon material for the adsorption isotherm and kinetics of tetracycline antibiotics", Bioresour. Technol., 243, 778-784. https://doi.org/10.1016/j.biortech.2017.06.174.   DOI
39 Ai, L., Zhou, Y. and Jiang, J. (2011), "Removal of methylene blue from aqueous solution by montmorillonite/CoFe2O4 composite with magnetic separation performance", Desalination, 266(1-3), 72-77. https://doi.org/10.1016/j.desal.2010.08.004.   DOI
40 Ammam, M. (2013), "Polyoxometalates: Formation, structures, principal properties, main deposition methods and application in sensing", J. Mater. Chem., A, 1, 6291-6312. https://doi.org/10.1039/c3ta01663c.   DOI
41 Arami, M., Limaee N.Y., Mahmoodi N.M. and Tabrizi N.S. (2006), "Equilibrium and kinetics studies for the adsorption of direct and acid dyes from aqueous solution by soy meal hull", J. Hazard. Mater., 135, 171-179. https://doi.org/10.1016/j.jhazmat.2005.11.044.   DOI
42 Baral, S.S., Das, N., Roy Chaudhury, G. and Das, S.N. (2009), "A preliminary study on the adsorptive removal of Cr(VI) using seaweed, Hydrilla verticillata", J. Hazard. Mater., 171, 358-369. https://doi.org/10.1016/j.jhazmat.2009.06.011.   DOI
43 Ben-Ali, S., Jaouali, I., Souissi-Najar, S. and Ouederni, A. (2017), "Characterization and adsorption capacity of raw pomegranate peel biosorbent for copper removal", J. Clean. Prod., 142, 3809-3821. https://doi.org/10.1016/j.jclepro.2016.10.081.   DOI
44 Du, Q., Sun, J., Li, Y., Yang, X., Wang, X., Wang, Z. and Xia, L. (2014), "Highly enhanced adsorption of congo red onto graphene oxide/chitosan fibers by wet-chemical etching off silica nanoparticles", Chem. Eng. J., 245, 99-106. https://doi.org/10.1016/j.cej.2014.02.006.   DOI
45 Ghaedi, M., Nasab, A.G., Khodadoust, S., Rajabi, M. and Azizian, S. (2014), "Application of activated carbon as adsorbents for efficient removal of methylene blue: Kinetics and equilibrium study", J. Ind. Eng. Chem., 20(4), 2317-2324. https://doi.org/10.1016/j.jiec.2013.10.007.   DOI
46 Hosseini, M., Keshtkar, A.R. and Moosavian, M.A. (2016), "Electrospun chitosan/baker's yeast nanofibre adsorbent: Preparation, characterization and application in heavy metal adsorption", Bull. Mater. Sci., 39, 1091-1100. https://doi.org/10.1007/s12034-016-1260-5.   DOI
47 Guzel, F., Saylili, H., Akkaya Saylili, G. and Koyuncu, F. (2015), "New low-cost nanoporous carbonaceous adsorbent developed from carob (Ceratonia siliqua) processing industry waste for the adsorption of anionic textile dye: Characterization, equilibrium and kinetic modeling", J. Mol. Liq., 206, 244-255. https://doi.org/10.1016/j.molliq.2015.02.037.   DOI
48 Hebbar, R.S., Isloor, A.M., Inamuddin, Abdullah, M.S., Ismail, A.F. and Asiri, A.M. (2018), "Fabrication of polyetherimide nanocomposite membrane with amine functionalised halloysite nanotubes for effective removal of cationic dye effluents", J. Taiwan Inst. Chem. Eng., 93, 42-53. https://doi.org/10.1016/j.jtice.2018.07.032.   DOI
49 Heibati, B., Rodriguez-couto, S., Amrane, A., Rafatullah, M., Hawari, A. and Al-ghouti, M.A. (2014), "Uptake of reactive black 5 by pumice and walnut activated carbon: Chemistry and adsorption mechanisms", J. Ind. Eng. Chem., 20(5), 2939-2947. https://doi.org/10.1016/j.jiec.2013.10.063.   DOI
50 Khan, M.A., Khan, M.I. and Zafar, S. (2017), "Removal of different anionic dyes from aqueous solution by anion exchange membrane", Membr. Water Treat., 3, 259-277. https://doi.org/10.12989/mwt.2017.8.3.259.   DOI
51 Kumar, D. and Landry, C.C. (2007), "Immobilization of a Mo, V-polyoxometalate on cationically modified mesoporous silica: Synthesis and characterization studies", Microporous Mesoporous Mater., 98, 309-316. https://doi.org/10.1016/j.micromeso.2006.09.023.   DOI
52 Li, F., Chen, Y., Huang, H., Cao, W. and Li, T. (2015), "Removal of rhodamine B and Cr(VI) from aqueous solutions by a polyoxometalate adsorbent", Chem. Eng. Res. Des., 100, 192-202. https://doi.org/10.1016/j.cherd.2015.05.030.   DOI
53 Khan, M.I., Ansari, T.M., Zafar, S., Buzdar, A.R., Khan, M.A., Mumtaz, F., Prapamonthon, P. and Akhtar, M. (2018), "Acid green-25 removal from wastewater by anion exchange membrane: Adsorption kinetic and thermodynamic studies", Membr. Water Treat., 2, 79-85. https://doi.org/10.12989/mwt.2018.9.2.079.   DOI
54 Lafi, R., Mabrouk, W. and Hafiane, A. (2019), "Removal of Methylene blue from saline solutions by adsorption and electrodialysis", Membr. Water Treat., 2, 139-148. https://doi.org/10.12989/mwt.2019.10.2.139.   DOI
55 Laohaprapanon, S., Matahum, J., Tayo, L. and You, S.J. (2015), "Photodegradation of reactive black 5 in a ZnO/UV slurry membrane reactor", J. Taiwan Inst. Chem. Eng., 49, 136-141. https://doi.org/10.1016/j.jtice.2014.11.017.   DOI
56 Li, Q., Li, Y., Ma, X., Du, Q., Sui, K., Wang, D., Wang, C., Li, H. and Xia, Y. (2017), "Filtration and adsorption properties of porous calcium alginate membrane for methylene blue removal from water", Chem. Eng. J., 316, 623-630. https://doi.org/10.1016/j.cej.2017.01.098.   DOI
57 Li, C., Lou, T., Yan, X., Long, Y.Z., Cui, G. and Wang, X. (2018), "Fabrication of pure chitosan nanofibrous membranes as effective absorbent for dye removal", Int. J. Biol. Macromol., 106, 768-774. https://doi.org/10.1016/j.ijbiomac.2017.08.072.   DOI
58 Liu, J. and Wang, X. (2013), "Novel silica-based hybrid adsorbents : Lead (II) adsorption isotherms", Sci. World J., 2013, 1-7. http://dx.doi.org/10.1155/2013/897159.   DOI