• 제목/요약/키워드: member structures

검색결과 976건 처리시간 0.028초

분할최적화 기법에 의한 트러스 구조물의 형상최적화에 관한 연구 (A Study on the Geometric Optimization of Truss Structures by Decomposition Method)

  • 김성완;이규원
    • 한국농공학회지
    • /
    • 제29권4호
    • /
    • pp.73-92
    • /
    • 1987
  • Formulation of the geometric optimization for truss structures based on the elasticity theory turn out to be the nonlinear programming problem which has to deal with the cross-sectional area of the member and the coordinates of its nodes simultaneously. A few techniques have been proposed and adopted for the analysis of this nonlinear programming problem for the time being. These techniques, however, bear some limitations on truss shapes, loading conditions and design criteria for the practical application to real structures. A generalized algorithm for the geometric optimization of the truss structures, which can eliminate the above mentioned limitations, is developed in this study. The algorithm proposed utilizes the two-levels technique. In the first level which consists of two phases, the cross-sectional area of the truss member is optimized by transforming the nonlinear problem into SUMT, and solving SUMT utilizing the modified Newton Raphson method. In the second level, which also consists of two phases the geometric shape is optimized utillzing the unindirectional search technique of the Powell method which make it possible to minimize only the objective functlon. The algorithm proposed in this study is numerically tested for several truss structures with various shapes, loading conditions and design criteria, and compared with the results of the other algorithms to examine its applicability and stability. The numerical comparisons show that the two- levels algorithm proposed in this study is safely applicable to any design criteria, and the convergency rate is relatively fast and stable compared with other iteration methods for the geometric optimization of truss structures. It was found for the result of the shape optimization in this study to be decreased greatly in the weight of truss structures in comparison with the shape optimization of the truss utilizing the algorithm proposed with the other area optimum method.

  • PDF

AISC2005에 기준한 변단면 선설계 건축물시스템의 자동화 최적구조설계 (Self-Optimizing Structural Design of a Pre-engineered Building System with Nonprismatic Members based on AISC2005)

  • 김용석;오명호;송병규
    • 한국강구조학회 논문집
    • /
    • 제21권2호
    • /
    • pp.193-201
    • /
    • 2009
  • 철골 Pre-Engineered Building System(PEBS)이 국내에서도 80년도 후반부터 상당히 일반화되었지만 변단면 PEBS는 대부분 국외에서 개발된 최적화 프로그램으로 구조설계가 수행되고 있다. 이 연구에서는 3차원 변단면 PEBS의 구조설계를 AISC2005의 허용응력설계법과 KBC 기준에 따라 주어진 여러 제약조건들을 만족하도록 수치해석법으로 최적화하는 프로그램을 개발하였다. 변단면 구조물의 최적화 설계는 구조해석과 최적 부재설계를 수행하는데, 구조물의 최소 중량화를 위해서 구조해석과 부재설계 과정을 허용응력조건과 변위조건이 만족될 때까지 반복 수행한다. 2, 3차원 변단면 구조물을 최적화 설계한 결과에 의하면 변단면 용접 H-형강으로 설계하는 것이 압연 H-형강보다 상당한 철골 절약효과가 있는 것으로 나타났다. 변단면 용접 H-형강으로 설계하는 경우 구조물의 종류에 따라 차이는 있지만 AISC2005 기준으로 설계하는 것이 AISC1989 기준보다 철골량이 줄어들었고, 부재 춤도 작게 설계되어 웨브 좌굴에 새 기준이 더 안전한 것으로 평가되었다.

모멘트골조의 내진설계를 위한 부재 소성변형 요구량 예측 (Prediction of Member Plastic Rotation Demands for Earthquake Design of Moment Frames)

  • 엄태성;박홍근
    • 한국지진공학회논문집
    • /
    • 제13권5호
    • /
    • pp.51-60
    • /
    • 2009
  • 안전한 내진설계를 위해서는 각 부재에 요구되는 소성변형 요구량을 정확히 예측하여야 한다. 본 연구에서는 등가정적내진설계에 쉽게 활용할 수 있도록, 복잡한 비선형해석 없이 탄성해석을 사용하여 모멘트골조 부재의 소성변형을 평가하는 방법을 개발하였다. 각 부재의 소성변형은 부재 강성과 탄성해석 결과로부터 직접 결정되는 층간변위비 요구량 및 모멘트 재분배 등의 설계 변수로부터 결정된다. 제안된 방법을 8층 2경간의 모멘트골조에 적용하고, 비선형해석을 통하여 제안된 방법의 정확성을 검증하였다. 검증결과, 제안된 방법은 비선형거동에 의한 층간변위비 요구량과 각 부재의 소성변형 요구량을 정확히 평가하였다. 제안된 방법은 부재연성설계와 같은 신축건물의 내진설계에 활용할 수 있을 뿐만 아니라 기존건물의 내진성능평가에도 활용될 수 있을 것으로 기대된다.

해저터널용 복합신소재 배수복합관 부재의 정적거동에 관한 실험적 연구 (An experimental study on the static behavior of advanced composite materials drainage pipe member for an undersea tunnel)

  • 신종호;김강현;김두래;지효선
    • 한국터널지하공간학회 논문집
    • /
    • 제17권2호
    • /
    • pp.65-74
    • /
    • 2015
  • 해저터널용 복합신소재 배수관구조를 설계하기 위해서는 복합신소재 구조부재의 적층형태별 역학적 성질을 결정하는 것이 필수적이다. 복합신소재는 일반적으로 등방성 재료와 달리 치수효과가 매우 큰 것으로 알려져 있다. 본 연구에서는 복합신소재 부재의 적층형태별 인장시험을 상온($20^{\circ}C$)과 해수온도($0^{\circ}C$)에서 각각 수행하였다. 또한, 이론적 해석방법인 혼합물의 법칙과 탄성해법을 적용하여 재료의 역학적 성질을 추정하고 시험결과와 비교를 하였다. 해저터널 복합신소재 배수관 구조부재를 설계할 때 사용되는 역학적 성질의 값은 상온에서 얻어진 값을 보정하여 적용하여야 된다. 이러한 자료는 향후 해저터널용 복합신소재 배수관구조의 설계의 기초자료로 제공하고자 하였다.

Damage identification of belt conveyor support structure using periodic and isolated local vibration modes

  • Hornarbakhsh, Amin;Nagayama, Tomonori;Rana, Shohel;Tominaga, Tomonori;Hisazumi, Kazumasa;Kanno, Ryoichi
    • Smart Structures and Systems
    • /
    • 제15권3호
    • /
    • pp.787-806
    • /
    • 2015
  • Due to corrosion, a large number of belt conveyors support structure in industrial plants have deteriorated. Severe corrosion may result in collapse of the structures. Therefore, practical and effective structural assessment techniques are needed. In this paper, damage identification methods based on two specific local vibration modes, named periodic and isolated local vibration modes, are proposed. The identification methods utilize the facts that support structures have many identical members repeated along the belt conveyor and there exist some local modes within a small frequency range where vibrations of these identical members are much larger than those of the other members. When one of these identical members is damaged, this member no longer vibrates in those modes. Instead, the member vibrates alone in an isolated mode with a lower frequency. A damage identification method based on frequencies comparison of these vibration modes and another method based on amplitude comparison of the periodic local vibration mode are explained. These methods do not require the baseline measurement records of undamaged structure. The methods is capable of detecting multiple damages simultaneously. The applicability of the methods is experimentally validated with a laboratory model and a real belt-conveyor support structure.

Parametric study on bearing capacity of CFST members considering the concrete horizontal casting effect

  • Sun, Wenbo;Luo, Yiqun;Zhou, Weijian;Huang, Wei
    • Steel and Composite Structures
    • /
    • 제13권3호
    • /
    • pp.259-275
    • /
    • 2012
  • Concrete filled steel tubular (CFST) member has been widely used in the construction of high-rise buildings for its high axial bearing capacity. It can also be applied on long-span structures such as spatial structures or bridges not only for its high bearing capacity but also for its construction convenience. Concrete casting effect of CFST member is considered in the study of its bearing capacity in this paper. Firstly, in order to authenticate the applicability of constitutive relationship and yield criterion of steel and concrete based on FEM, two ANSYS models are built to simulate and compared with other's test. Secondly, in order to find the huge difference in bearing capacity due to different construction processes, two full-size CFST models are studied when they are horizontally cast and axially compressed. Finally, the effects of slenderness ratio (L/D) and confining parameter (D/t) of CFST members are studied to reveal the intrinsic links between bearing capacity and slenderness ratio or confining parameter.

Residual behavior of SRRAC beam and column after exposure to high temperatures

  • Zhou, Ji;Chen, Zongping;Zhou, Chunheng;Zheng, Wei;Ye, Peihuan
    • Steel and Composite Structures
    • /
    • 제45권3호
    • /
    • pp.369-388
    • /
    • 2022
  • Composite effect between steel and recycled aggregate concrete (RAC) in steel reinforced-RAC (SRRAC) structures can effectively improve RAC's adverse mechanical properties due to the natural defects of recycled coarse aggregate (RCA). However, the performance of SRRAC after thermal exposure will have a great impact on the safety of the structure. In this paper, firstly, the mechanical properties of SRRAC structures after high temperatures exposure were tested, including 24 SRRAC columns and 32 SRRAC beams. Then, the change rules of beams and columns performance with the maximum temperature and replacement percentage were compared. Finally, the formulas to evaluate the residual bearing capacity of SRRAC beams and columns after exposure to high temperatures were established. The experimental results show that the maximum exposure temperature can be judged by the apparent phenomenon and mass loss ratio of RAC. After high temperatures exposure, the mechanical properties of SRRAC beams and columns change significantly, where the degradation of bearing capacity and stiffness is the most obvious. Moreover, it is found that the degradation degree of compression member is more serious than that of flexural member. The formulas of residual bearing capacity established by introducing influence coefficient of material strength agree well with the experimental results.

전통 민도리식 목구조 화통맞춤의 구조적 특성 (A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures)

  • 유혜란;권기혁
    • 건축역사연구
    • /
    • 제21권3호
    • /
    • pp.7-28
    • /
    • 2012
  • This study is intended to Mindori structure which is general private houses' structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn. 1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed. 2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn't affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks. 3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is. 4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.

목재를 이용한 육각형 공간 트러스 모델의 정적좌굴하중 특성 (Characteristics of Static Buckling Load of the Hexagonal Spatial Truss Models using Timber)

  • 하현주;손수덕;이승재
    • 한국공간구조학회논문집
    • /
    • 제22권3호
    • /
    • pp.25-32
    • /
    • 2022
  • In this paper, the instability of the domed spatial truss structure using wood and the characteristics of the buckling critical load were studied. Hexagonal space truss was adopted as the model to be analyzed, and two boundary conditions were considered. In the first case, the deformation of the inclined member is only considered, and in the second case, the deformation of the horizontal member is also considered. The materials of the model adopted in this paper are steel and timbers, and the considered timbers are spruce, pine, and larch. Here, the inelastic properties of the material are not considered. The instability of the target structure was observed through non-linear incremental analysis, and the buckling critical load was calculated through the singularities and eigenvalues of the tangential stiffness matrix at each incremental step. From the analysis results, in the example of the boundary condition considering only the inclined member, the critical buckling load was lower when using timber than when using steel, and the critical buckling load was determined according to the modulus of elasticity of timber. In the case of boundary conditions considering the effect of the horizontal member, using a mixture of steel and timber case had a lower buckling critical load than the steel case. But, the result showed that it was more effective in structural stability than only timber was used.

Hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure evaluated by FEA and pseudo-dynamic testing

  • Ju-Seong Jung;Bok-Gi Lee;Kang-Seok Lee
    • Computers and Concrete
    • /
    • 제33권2호
    • /
    • pp.217-240
    • /
    • 2024
  • The purpose of this study is to propose new hysteretic characteristics of medium- to low-rise RC structures controlled by both shear and flexure. Through previous study, the dual lateral force-resisting system composed of shear and flexural failure members has a new failure mechanism that cooperates to enhance the flexural capacity of the flexural failure member even after the failure of the shear member, and the existing theoretical equation significantly underestimates the ultimate strength. In this study, the residual lateral strength mechanism of the dual lateral force-resisting system was analyzed, and, as a result, an equation for estimating the residual flexural strength of each shear-failure member was proposed. The residual flexural strength of each shear-failure member was verified in comparison with the structural testing results obtained in previous study, and the proposed residual flexural strength equation for shear-failure members was tested for reliability using FEA, and its applicable range was also determined. In addition, restoring-force characteristics for evaluating the seismic performance of the dual lateral force-resisting system (nonlinear dynamic analysis), reflecting the proposed residual flexural strength equation, were proposed. Finally, the validity of the restoring-force characteristics of RC buildings equipped with the dual lateral force-resisting system proposed in the present study was verified by performing pseudo-dynamic testing and nonlinear dynamic analysis based on the proposed restoring-force characteristics. Based on this comparative analysis, the applicability of the proposed restoring-force characteristics was verified.