• Title/Summary/Keyword: member force

Search Result 472, Processing Time 0.029 seconds

Study on Design Parameters in a Stamping Process of an Automotive Member with the Simulation-based Approach (해석적인 방법을 이용한 복잡한 형상의 자동차 부재 스탬핑 공정에서의 주요 설계인자 연구)

  • Song J. H.;Kim S. H.;Kim S. H.;Huh H.
    • Transactions of Materials Processing
    • /
    • v.14 no.1 s.73
    • /
    • pp.21-28
    • /
    • 2005
  • This paper is concerned with the quantitative effect of design parameters on a stamped part of the auto-body. The considered parameters in this paper are the blank holding force, the draw-bead force, the blank size which greatly affect the metal flow during stamping. The indicators of formability selected in this paper are failures such as tearing, wrinkling and the amount of springback. The stamping process of the front side inner member is simulated using the finite element analysis changing the design parameters. The numerical results demonstrate that the blank holding force cannot control the local metal flow during forming although it controls the overall metal flow. The modification of the initial blank size considering the punch opening line ensures the local wrinkling and reduces the amount of springback after forming. The restraining force of draw-bead controls the metal flow in the local area and reduces the amount of excess metal. It is noted that the parametric study of design parameters such as blank holding force, the blank size and the draw-bead are very important in the process design of the complicated member.

Development of a Tensile Force Measurement Device of Long Duration (인장력 상시 측정장치 개발에 관한 연구)

  • Shin, Kyung Jae;Hwang, Yun Ha
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.435-445
    • /
    • 2003
  • Tension member is one of the most important elements in tension structure. An economical and reliable measurement method of a member's tensile force has yet to be developed, however. Several conventional measurement methods have some disadvantages when used for long-term, on-site measurement. A new tension-force measurement device was proposed to resolve measuring problems. Its principle was to use the bending part of the device as an elastic spring. The lateral deformation of the bending part due to tensile force can be measured to monitor the tensile force. This device was inserted in the tension member like a turn-buckle. Lateral deformation may be measured in the field at any time for the purpose of maintaining structures. Finite element analysis was used to design the shape and parametric study. Six specimens were tested within the elastic range. The test result showed that the elastic behavior or the bending part was consistent with the analysis' results.

Structural Characteristics of Concrete Filled GFRP Composite Compression Member (콘크리트 합성 유리섬유 복합소재 압축부재의 거동특성)

  • 이성우;최석환;손기훈;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.04a
    • /
    • pp.181-188
    • /
    • 2001
  • Due to many advantage of advanced composite material, research on the composite compression member is initiated. In this paper structural characteristics of concrete filled glass fiber reinforced composite tubular member is studied. Through 4-point flexural test with various level of axial force, the performance of composite compression member was analyzed. Also numerical method to find P-M diagram of composite compression member was developed. It is demonstrated that result of numerical method agree well with experimental results.

  • PDF

The Type of Composition and Classification of Tension Structure Systems in Architecture (건축 인장구조시스템의 분류와 구성유형)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.3 no.3 s.9
    • /
    • pp.111-120
    • /
    • 2003
  • Tension members is a type of effective structural member, which is often used in large span structures. The structure systems composed with tension members are combined in various way and specific formations. So, there are need to research into the formations of tension structure and the type of adaptation in tension structure architectures. The structure systems with tension members were considered as tension main system, vector system and tension supported bending system, comprehensively. And tension structures were classified into the formation of tension structure with uniaxial or multiaxial line tension member, with surface member, with hybrid member of line and surface, concerning the flow of tension force. In each the formation of tension structure, the typical adaptations to architecture were also investigated through architecture examples. The type of the formation can be used to plan an architecture with respect to the flow of tension force and structural feature.

  • PDF

Evaluation of Internal Bracing Member Forces due to Distortional Behaviors of Tub Section Steel Box Girders (U형 강박스 거더의 뒤틀림 거동에 의한 내부 수직브레이싱 부재력 평가)

  • Kim, Kyung-Sik
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.2
    • /
    • pp.249-259
    • /
    • 2011
  • In this study, the distortional behaviors of tub-section steel girders subjected to torsional loading were analyzed, and predictor equations were developed for estimating the member forces induced in the internal bracing system installed in the steel tub girders. Torsional loadings originated either by eccentric vertical loading or girder curvature were decomposed into the pure torsional force component that does not affect the distortional box deformation, and into the distortional force component that directly induces box distortion. The axial member forces induced in the internal cross frames were formulated as a function of the magnitude of torsional loading through the analytical investigation of the interactions between the distortional force component and internal cross frames. To verify the proposed equations, three-dimensional finite element analysis (3D FEA) was conducted for the straight simple-span girder and the three-span continuous girder samples. Very good agreement was found between the member forces from the FEA and the proposed equations.

A Study on the Development of Force Limiting Devices of Folded Plate Type (절판형 응력제한 기구의 개발에 관한 연구)

  • Kim, Cheol Hwan;Chae, Won Tak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.6
    • /
    • pp.571-579
    • /
    • 2014
  • The steel braces are used to control the lateral drift of high rise buildings. The braces are designed as tensile members since the braces consisted of slender member can not resist compressive loads by elastic buckling. To resolve this problem, a lot of research were performed to develop the non-buckling member. The force limiting device (FLD.) is one of them. The purpose of this study is the development of FLD. to prevent a elastic buckling for a slender member. The folded plate type is proposed to induce the yielding before occurring elastic buckling. In this study, member test and FEM analysis for proposed type were performed. Further, It is verified that the structure with FLD member is stable by high energy absorption. The proposed folded plate type FLD could be effective to preserve the compressive member from the elastic buckling.

The Effect of Axial Force on the Behavior and Average Crack Spacing of Reinforced Concrete Flexural Member (축력이 철근콘크리트 휨부재의 거동과 평균 균열간격에 미치는 영향)

  • 양은익;김진근;이성태;임전사랑
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.4
    • /
    • pp.207-214
    • /
    • 1997
  • This study was performed to verify the effect of axial force due to restraint on the mechanical behavior and the average crack spacing of the reinforced concrett. ilexural menlbers. For. this purpose, the flexural sttvngt.h and rigidity werc experimentally investigated undcl. axially rcstmined and unr.est.rainrd conditions. Furthermore , the average crack spacing was also checkcd for the axilly restrained contlit.ion. Thc test results showd that the flexual strength and rigidity of t,he restrained beam were higher. than those of the unrestrained beam. The major. factors affecting on the average crack spacing were steeel stress, axial force, cicumference of reinforcing bar and effective tension arm of concrete. However. the concrete compressive strength was minor effect. Including thesc factors, a prediction equation for the average crack spacing of the restrained member was proposed.

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

Study of Load Combination and Member Force of Cut and Cover Tunnel by Design Codes (도시철도 개착식 구조물의 설계기준별 하중조합 및 단면력 검토)

  • Hur, Jin-Ho;Kim, Jin-Ho
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1185-1190
    • /
    • 2011
  • In designing cut and cover tunnels, load combination applied Korea seismic design code of urban transit and its sections applied Korea concrete code 2003. However, by revision of Korea concrete code in 2007, engineers have been experiencing difficulties in their work. In this study, application of Korea concrete code 2007 for designing is reviewed by comparing load combination of related codes and member force.

  • PDF

A Structural Characteristics of Hwatong-Connections in Traditional Mindori Type of Wood Structures (전통 민도리식 목구조 화통맞춤의 구조적 특성)

  • Yu, Hye-Ran;Kwon, Ki-Hyuk
    • Journal of architectural history
    • /
    • v.21 no.3
    • /
    • pp.7-28
    • /
    • 2012
  • This study is intended to Mindori structure which is general private houses' structural type among traditional types and is a basic study to confirm structural characteristics of Hwatong connection which is general connection type of column-beam-cross beam. It is aimed to analyze how main member, column, such as size, figure, thickness of Sungetuk and Dugeup affect on structure. Following conclusions are drawn. 1. According to connection conditions, models with big coefficient of friction show stable hysteretic behavior until the angle rotation of member reaches 1/60 and models with small coefficient of friction show dramatical increase in load after the angle rotation of member reaches 1/24. After the angle rotation of member reaches 1/30, separation distance of members is identified physically and cracks are not observed. 2. Specimens with big coefficient of friction show similar inner force regardless of column size(except column size 150mm) and models with small coefficient of friction show increasing inner force as the column size increases. Specimens with same sectional area have similar inner force even though the column figures are different. The thickness of Sungetuk and Dugeup doesn't affect inner force greatly, however, when the thickness of Sungetuk is thin, it could lead to failure of structure as it breaks. 3. The bigger the size of column and the coefficient of friction are, the smaller Bending stiffness depreciation ratio is. 4. Energy Dissipation Efficiency differs from the coefficient of friction. When the coefficient of friction is big, square column shows bigger than round one and it is bigger when the thickness of Sungetuk and Dugeup is thicker. When the coefficient of friction is small, round column shows bigger than square one.