• Title/Summary/Keyword: member

Search Result 6,701, Processing Time 0.033 seconds

A Study on the Flexural Capacity of Wooden Member According to the Reinforcement Ratio of Synthetic Resin (합성수지의 보강비율에 따른 목재의 휨 보강 성능에 관한 연구)

  • Kang, Ho-Geun
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.91-98
    • /
    • 2017
  • Most of the cultural assets in Korea are wooden structures. Due to the material characteristics of wood, the preservation of traditional wooden structure is impossible by simple maintenance. Damaged member is replaced with new member or completely dissolve and restore them. But member has a cultural value, so that it is impossible to arbitrarily replace each member. Although the preservation treatment method using synthetic resin is emphasized, there is no exact standard for proper reinforcement ratio. This paper is experimental study for reinforcement ratio of wooden flexural member with synthetic resins, Reinforced ratio on section area of flexural member. As a result, synthetic resin reinforcement are selected as experimental variables by proper ratio enhanced flexural capacity of reinforced wooden member than new wooden member.

Member Selection Procedure in the Steel Structural Design (강구조물설계에서 부재선정의 시스템화 방법론)

  • 이영호;김상철;김흥국;이병해
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.10a
    • /
    • pp.197-206
    • /
    • 1995
  • In structural design procedure, The procedure of member selection manages complex data relationship and reflects structural expert's knowledge. It is a difficult problem to construct an effective system with the conventional l programming technique. Knowledge_based s!'stem is a software system capable of supporting the explicit representation of expert's knowledge in member selection process through member data and reasoning mechanisms. This study describes useful methodology for structuring knowledge and representing relation between member data and knowledge. And this study shows the application of this member for member selection in the steel structural design.

  • PDF

Dynamic nonlinear member failure propagation in truss structures

  • Malla, Ramesh B.;Nalluri, Butchi B.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.111-126
    • /
    • 2000
  • Truss type structures are attractive to a variety of engineering applications on earth as well as in space due to their high stiffness to mass ratios and ease of construction and fabrication. During the service life, an individual member of a truss structure may lose load carrying capacity due to many reasons, which may lead to collapse of the structure. An analytical and computational procedure has been developed to study the response of truss structures subject to member failure under static and dynamic loadings. Emphasis is given to the dynamic effects of member failure and the propagation of local damage to other parts of the structure. The methodology developed is based on nonlinear finite element analysis technique and considers elasto-plastic material nonlinearity, postbuckling of members, and large deformation geometric nonlinearity. The pseudo force approach is used to represent the member failure. Results obtained for a planar nine-bay indeterminate truss undergoing sequential member failure show that failure of one member can initiate failure of several members in the structure.

An Experimental Study on Connection System of FRP Modular Box Member (FRP 모듈형 박스 부재의 연결 시스템에 관한 실험적 연구)

  • Kwak, Kae-Hwan;Jang, Hwa-Sup;Yang, Dong-Woon;Kim, Ho-Sun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.51 no.4
    • /
    • pp.29-36
    • /
    • 2009
  • This is a basic experimental study to apply FRP modular box member to a variety of construction structures exposed to flexural strength, such as a slab and a girder. Applying FRP modular box member to a real structure requires a large section. FRP box member was made into modular systems. Tests were conducted under various conditions in order to analyze jointing performance of the developed FRP modular box member as a large section. For the methods of jointing FRP modular box member, synthetic resins connection, mechanical connection, and a combination of both were used to test both length and breadth connection. As a result of the test, using urethane + two bolts + sheets was the most efficient method of connecting FRP modular box member. It is expected that the proposed joint system in this study will contribute to the increase of failure load and synthesis behavior of FRP modular box member.

Development of Material Nonlinear Models for Concrete in Internally Confined Hollow Members Considering Confining Effect (내부 구속 중공 CFT 부재 콘크리트의 비선형 재료 모델 개발)

  • Han Taek-Hee;Han Sang-Yun;Lim Nam-Hyoung;Kang Jin-Ook;Lee Myeoung-Sub;Kang Young-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.133-140
    • /
    • 2006
  • When concrete is confined triaxially, its strength and toughness are enhanced. Hoop reinforcements or transverse reinforcements laterally confine concrete in the case of a RC member and an outer tube confines concrete in a CFT(Concrete Filled Tube) member. But biaxially confined concrete. such as concrete in a hollow R.C member, does not have much enhanced strength and toughness. In this study, a new-type member. which is a hollow CFT member named as an ICH(Internally Confined Hollow) CFT member, was developed to overcome the low ductility of the hollow member and the high cost of the CFT member. A material nonlinear model for the concrete in an CFT member or an ICH CFT member was developed and coded as a computer program based on Mander's concrete model. Analysis results were verified with experimental results and the developed analysis model showed reasonable and accurate results.

  • PDF

A Study on Organizational Loyalty of Hospital Employees; Focusing on Overall Members at a University Medical Center in Seoul Metropolitan Area (병원 구성원의 조직 충성도에 관한 연구 - 서울의 한 대학병원 전체구성원을 중심으로 -)

  • Kim, Yang-Kyun;Cho, Chul-Ho
    • Health Policy and Management
    • /
    • v.18 no.2
    • /
    • pp.39-66
    • /
    • 2008
  • This study examines organizational qualities such as vision, mission, teamwork, fairness, and empowerment and their effects on organizational members. As a result of analysis, these qualities are identified to affect member satisfaction, but not to affect job involvement. Member satisfaction affects job satisfaction, and this relationship retains indirect influence through an increase in member satisfaction. Further, improved member satisfaction and job involvement are found to affect organizational commitment. These results are derived from complete enumeration on members of an organization where particular traits such as member position, job classification, and the privity of contract are intermixed. In case where research is conducted on the aforementioned traits separately, different results would be anticipated depending on each trait. The implications of this study are as follows. First, clear-cut organizational vision and mission established by the top management of an organization prevent confusion amongst its members, and thus have the highest level of effect on member satisfaction. Second, teamwork in reference to the. relationship amongst team members of a work group and goal awareness improves member satisfaction. Third, autonomy for job performance and related empowerment improve member satisfaction. Last, fairness in wages and promotion affects member satisfaction. Therefore, internal qualities of an organization perceived by its members have a higher degree of influence over external qualities including compensation and promotion on the members. In addition, these internal qualities indirectly affect job involvement through an increase in member satisfaction, and, in turn, member satisfaction and job involvement affect organizational commitment of the members. In case of member satisfaction, not only does it affect organizational commitment of the members of an organization directly, but also affects organizational commitment indirectly through job involvement. This study is conducted with only one hospital in consideration, and thus its findings may not be generalized for every medical organization. However, this study retains distinct attributes of complete. enumeration, and the precedence of each variable is closely investigated.

Influence of end fixity on post-yield behaviors of a tubular member

  • Cho, Kyu Nam
    • Structural Engineering and Mechanics
    • /
    • v.13 no.5
    • /
    • pp.557-568
    • /
    • 2002
  • For the evaluation of the capability of a tubular member of an offshore structure to absorb the collision energy, a simple method can be employed for the collision analysis without performing the detailed analysis. The most common simple method is the rigid-plastic method. However, in this method any characteristics for horizontal movement and rotation at the ends of the corresponding tubular member are not included. In a real structural system of an offshore structure, tubular members sustain a certain degree of elastic support from the adjacent structure. End fixity has influences in the behaviors of a tubular member. Three-dimensional FEM analysis can include the effect of end fixity fully, however in viewpoints of the inherent computational complexities of the 3-D approach, this is not the recommendable analysis at the initial design stage. In this paper, influence of end fixity on the behaviors of a tubular member is investigated, through a new approach and other approaches. A new analysis approach that includes the flexibility of the boundary points of the member is developed here. The flexibility at the ends of a tubular element is extracted using the rational reduction of the modeling characteristics. The property reduction is based on the static condensation of the related global stiffness matrix of a model to end nodal points of the tubular element. The load-displacement relation at the collision point of the tubular member with and without the end flexibility is obtained and compared. The new method lies between the rigid-plastic method and the 3-demensional analysis. It is self-evident that the rigid-plastic method gives high strengthening membrane effect of the member during global deformation, resulting in a steeper slope than the present method. On the while, full 3-D analysis gives less strengthening membrane effect on the member, resulting in a slow going load-displacement curve. Comparison of the load-displacement curves by the new approach with those by conventional methods gives the figures of the influence of end fixity on post-yielding behaviors of the relevant tubular member. One of the main contributions of this investigation is the development of an analytical rational procedure to figure out the post-yielding behaviors of a tubular member in offshore structures.

Reinforcement Effects of Buckling Member for Single-layer Latticed Dome (단층래티스 돔의 좌굴부재 보강효과에 관한 연구)

  • Jung, Hwan-Mok;Yoon, Seok-Ho;Lee, Dong-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.45-52
    • /
    • 2016
  • The single layer latticed domes have attracted many designers and researchers's attention all of the world, because these structures as spatial structure are of great advantage in not only mechanical rationality but also function, fabrication, construction and economic aspect. But single layer latticed domes are apt to occur the unstable phenomena that are called "buckling" because of the lack of strength of members, instability of structural shape, etc. In the case of latticed dome, there are several types of buckling mode such as overall buckling, local buckling, and member buckling according to the shape of dome, section type of member, the size of member, junction's condition of member and so on. There are many methods to increase the buckling strength of the single layer latticed dome, that is, with the change of geometrical shape of dome, the reinforcement of buckled member, etc. Therefore, the purpose of this study is to verify the reinforcement effect of buckled member when designers reinforce the buckled member to increase the buckling strength of single layer latticed dome with 3-way grid.

Energy Absorption Characteristics of Side Member for Light-weight Having Various Stacking Condition and Shape of Section (경량화용 사이드부재의 적층구성 및 단면형상 변화에 따른 에너지흡수 특성)

  • Lee, Kil-Sung;Seo, Hyeon-Kyeong;Yang, In-Young;Sim, Jae-Ki
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.6 s.261
    • /
    • pp.671-678
    • /
    • 2007
  • Front-side members of automobile, such as the hat shaped section members, are structures with the greatest energy absorbing capability in a front-end collision of vehicle. This paper was performed to analyze energy absorption characteristics of the hat shaped section members, which are basic shape of side member. The hat shaped section members consisted of the spot welded side member which was utilized to an actual vehicle and CFRP side member for lightweight of vehicle structural member. The members were tested under static axial loading by universal testing machine. Currently, stacking condition related to the collapse characteristics of composite materials is being considered as an issue fer the structural efficiency and safety of automobiles, aerospace vehicles, trains, ships even elevators during collision. So, energy absorption characteristics were analyzed according to stacking condition and shape of section and compared the results of spot welded side member with those of CFRP side member.

The Type and Development for Structure System with Non-rigid Member (대공간 연성 구조시스템의 종류와 발달과정)

  • Lee, Ju-Na;Park, Sun-Woo;Park, Chan-Soo
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2004.05a
    • /
    • pp.148-157
    • /
    • 2004
  • The structure systems with non-rigid member were classified by the composition type of line and surface members. As a result of the classification, there are 1-way cable structure, cable net and radial cable net structure in the line member system. And there are pneumatic structure and suspension membrane structure in surface member system. In addition, when the line and surface members are composed together, there is the hybrid membrane system which are divided into hanging type and supported type. In this paper, the Korean terms of structure systems with non-rigid member are recommended through this classification. In each the structure systems with non-rigid member, the examples were also investigated considering their historical developments. It present that the light weight structure system and the openness of space have pursued with the developments. So largely, cable net structure with membrane, membrane structure and hybrid structure have used in these days.

  • PDF