• Title/Summary/Keyword: melting behavior

Search Result 348, Processing Time 0.023 seconds

Decontamination Characteristics of 304 Stainless Steel Surfaces by a Q-switched Nd:YAG Laser at 532 nm (532 nm 파장의 큐스위치 Nd:YAG 레이저를 이용한 스테인리스 스틸 표면 제염특성)

  • Moon, Jei-Kwon;Baigalmaa, Byambatseren;Won, Hui-Jun;Lee, Kune-Woo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.3
    • /
    • pp.181-188
    • /
    • 2010
  • Metal surface decontamination characteristics were investigated by using a laser ablation method. A second harmonic generation of a Q-switched Nd:YAG laser with a wave length of 532 nm, a pulse energy of 150 mJ and a pulse width of 5 ns was employed to assess the decontamination performance for metal surfaces contaminated with $CsNO_3$, $Co(NH_4)_2(SO_4)_2$, $Eu_2O_3$ and $CeO_2$. The ablation behavior was investigated for the decontamination variables such as a number of laser shots, laser fluence and an irradiation angle. Their optimum values were found to be 8, 13.3 J/$cm^2$ and $30^{\circ}$, respectively. The decontamination efficiency was different depending on the kinds of the contaminated ions, due to their different melting and boiling points and was in the order: $CsNO_3>Co(NH_4)_2(SO_4)_2>Eu_2O_3>CeO_2$. We also evaluated a correlation between the metal ablation thickness and the number of laser shots for the different laser fluences.

Study on Incineration Behavior of Heavy Oil Fly Ash for Valuable Metal Recovery (유가금속(有價金屬) 회수(回收)를 위한 중유회(重油灰)의 연소거동(燃燒擧動)에 관한 연구(硏究))

  • Choi, Young-Yeon;Nam, Chul-Woo;Kim, Byoung-Gyu
    • Resources Recycling
    • /
    • v.18 no.1
    • /
    • pp.22-29
    • /
    • 2009
  • To design and construct a moving bed stoker incinerator for incineration treatment of the domestic oil fly ash, operating condition and moving bed area of incinerator were determined by performing incinerate experiment of the oil fly ash in the muffle furnace which simulates moving bed stoker incinerator in all conditions. Incineration process of the oil fly ash could be divided into 3 stages, every stage needs the appropriate operating condition for effective incineration. The optimum content of water in the heavy oil fly ash was found to be 20 wt% to prevent the ash from flying and reduce the volume. Science combustion rate of oil fly ash depends on the oxygen content, the incinerator must have a equipment to control the oxygen content in the combustion air. The optimum temperature was $750{\sim}800^{\circ}C$ in order to prevent adhesion to the stocker and evaporation of metal compounds of low melting point. Uniform combustion reaction and acceleration of combustion rate required agitation during the combustion of oil fly ash. The incineration rate was $12.53kg/m^2hr$ and the working area of moving bed incinerator was found to be $60m^2$ to incinerate 18 tons of oil fly ash per day.

Miscibility of Melt-mixed PLLA/PMMA Blends for Optical Film Application (광학 필름 적용을 위한 용융혼합된 PLLA/PMMA 블렌드의 상용성 연구)

  • Park, Eun Ju;Kim, In Seok;Park, Sang Seok;Lee, Ho Sang;Lee, Moo Sung
    • Polymer(Korea)
    • /
    • v.37 no.6
    • /
    • pp.744-752
    • /
    • 2013
  • The miscibility between poly(L-lactide) (PLLA) and poly(methyl methacrylate) (PMMA) was investigated using thermal analyses for the purpose of developing birefringence-free material at oriented state. The effect of methyl acrylate (MA) units as comonomer of PMMA on the miscibility was also studied. All the blends prepared in this study show composition-dependent single $T_g$'s between those of blend components and high transparency over the visible region, indicating the miscibility at molecular level and no discernible effect of MA units on it. No phase separation was observed at elevated temperature of $280^{\circ}C$, higher than the degradation of PLLA and PMMA. The interaction energy density in PLLA/PMMA blends with 17 mol% of MA was measured to be $-0.74J/cm^3$ from the equilibrium melting temperature depression based on the Hoffman-Weeks method. The blends show zero-${\Delta}$n behavior at a specific mixing ratio and the drawing ratio of 3 due to compensation of intrinsic orientation birefringence. Birefringence dispersion of PLLA/PMMA5 blends was also measured to examine the possibility for quarter-wave plates or polarizer protective films.

Thermoelectric Properties of Sb Deficiency N-Type Skutterudite Co4Sb12 (Sb가 결핍된 N형 Skutterudite Co4Sb12의 열전 특성)

  • Tak, Jang-Yeul;Van Du, Nguyen;Jeong, Min Seok;Lee, NaYoung;Nam, Woo Hyun;Seo, Won-Seon;Cho, Jung Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.496-500
    • /
    • 2019
  • In this study, we investigate the effect of an Sb-deficiency on the thermoelectric properties of double-filled n-type skutterudite ($In_{0.05}Yb_{0.15}Co_4Sb_{12-x}$). Samples were prepared by encapsulated induction melting, consecutive long-time annealing, and finally spark plasma sintering processes. The Sb-deficient sample contained a $CoSb_2$ secondary phase. Both the double-filled n-type skutterudite pristine and Sb-deficient samples showed metallic behavior in electrical conductivity with increasing temperature. The carrier concentration of the Sb-deficient sample decreased compared with that of the pristine sample. Due to a decrease in carrier concentration, the Sb deficient sample showed decreased electrical conductivity and an increased Seebeck coefficient compared with the conductivity and coefficient of the pristine sample. Furthermore, the Sb deficient sample showed an increase in the power factor (${\sigma}{\cdot}S^2$); the power factor maximum shifted to athe lower temperature side than ones of the pristine sample. As a result, the Sb-deficient sample represents an improved average figure of merit (ZT) and a $ZT_{max}$ temperature lower than that of the pristine sample. Therefore, we propose that Sb-deficient double-filled n-type skutterudite thermoelectric material ($In_{0.05}Yb_{0.15}Co_4Sb_{12-x}$) be used in the 573~673 K temperature range.

Effect of Re and Ru Addition on the Solidification and Solute Redistribution Behaviors of Ni-Base Superalloys (니켈계 초내열합금의 응고 및 용질원소의 편석 거동에 미치는 레늄 및 루테늄 첨가의 영향)

  • Seo, Seong-Moon;Jeong, Hi-Won;Lee, Je-Hyun;Yoo, Young-Soo;Jo, Chang-Yong
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.11
    • /
    • pp.882-892
    • /
    • 2011
  • The influence of rhenium (Re) and ruthenium (Ru) addition on the solidification and solute redistribution behaviors in advanced experimental Ni-base superalloys has been investigated. A series of model alloys with different levels of Re and Ru were designed based on the composition of Ni-6Al-8Ta and were prepared by vacuum arc melting of pure metallic elements. In order to identify the influence of Re and Ru addition on the thermo-physical properties, differential scanning calorimetry analyses were carried out. The results showed that Re addition marginally increases the liquidus temperature of the alloy. However, the ${\gamma}^{\prime}$ solvus was significantly increased at a rate of $8.2^{\circ}C/wt.%$ by the addition of Re. Ru addition, on the other hand, displayed a much weaker effect on the thermo-physical properties or even no effect at all. The microsegregation behavior of solute elements was also quantitatively estimated by an electron probe microanalysis on a sample quenched during directional solidification of primary ${\gamma}$ with the planar solid/liquid interface. It was found that increasing the Re content gradually increases the microsegregation tendency of Re into the dendritic core and ${\gamma}^{\prime}$ forming elements, such as Al and Ta, into the interdendritic area. The strongest effect of Ru addition was found to be Re segregation. Increasing the Ru content up to 6 wt.% significantly alleviated the microsegregation of Re, which resulted in a decrease of Re accumulation in the dendritic core. The influence of Ru on the microstructural stability toward the topologically close-packed phase formation was discussed based on Scheil type calculations with experimentally determined microsegregation results.

Distribution Behavior of Natural Radionuclide Pb in Molten Fe to Metal/Slag/Gas Phase (용융 Fe 중 천연방사성핵종 Pb의 금속/슬래그/가스상으로의 분배거동)

  • So-Yeong Lee;Hyeon-Soo Kim;Jong-Hyeon Lee;Ho-Sang Sohn
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.54-61
    • /
    • 2024
  • When steel contaminated with Pb, produced by the decay of natural radionuclides, is remelted, Pb distributes among the metal, slag, and gas phases. In this study, 5 wt%Pb was added to Fe and melted with CaO-SiO2-Al2O3-MgO slag to investigate Pb's distribution in the metal/slag/gas. As slag basicity ((wt%CaO)/(wt%SiO2)) increased, Pb solubility in Fe slightly increased, while Pb in the slag tended to decrease. Consequently, the slag/metal distribution ratio of Pb decreased with increasing basicity. Thermodynamic calculations revealed that the slag/Fe phase distribution ratio of Pb remained very low irrespective of the activity coefficient of PbO in the slag, consistent with the experimental results. The calculated evaporation rate of Pb in Fe-Pb was approximately 22 times that of Fe; hence, most of the Pb evaporated into the gas phase.

A Study on the Biotope Structure of Wintering Place and Behavior Characteristics of Anser fabalis in Cheongna Area, Incheon Free Economic Zone, Korea (인천경제자유구역 청라지구에서의 큰기러기 월동지 비오톱구조와 행동특성 연구)

  • Park, Byeong-Ku;Han, Bong-Ho;Lee, Kyong-Jae;Kwak, Jeong-In;Im, Seong-Soo
    • Korean Journal of Environment and Ecology
    • /
    • v.27 no.3
    • /
    • pp.305-315
    • /
    • 2013
  • This study is aimed to provide the preliminary data for conservation and management of wintering site for Anser fabalis population in Cheongna Area, Incheon Free Economic Zone, Korea through analyzing the relationship between the biotop structure of its wintering site and behavior characteristics. The main types (size and ratio) of the biotope in Cheongna Area, Incheon Free Economic Zone are reed wetlands ($6,093,762m^2$, 47.8%), rice fields without rice straw ($2,927,916m^2$, 23.0%), and rice fields with rice straw ($1,915,655m^2$, 15.0%). According to the survey carried on 13th Feb., 2013, total 33 species and 6, 535 individual birds were observed and among of them, the dominant bird was Anser fabalis showing 5,128 indiviuals, 78% of total population. As the result of analyzing the migratory route of Anser fabalis, the bird moved from roosting site to foraging site before and after sunrise and from feeding site to roosting site before and after sunset. According to the analysis of interrelation between habitat characteristics and biotope types of the bird, population density was the highest in reed wetlands among habitat types and individual appearance was the highest in water-filled rice field melting ice. The bird ate the roots and bulb of hydrophytes in reed wetlands and showed various behaviors like eating dropped grains, resting and sleeping in water-filled rice fields and eating dropped grains and resting in rice fields with and without rice straw. It is shown that the number of Anser fabalis appearing in rice fields is depended on the presence of dropped grains than types of rice field.

Research of Diffusion Bonding of Tungsten/Copper and Their Properties under High Heat Flux

  • Li, Jun;Yang, Jianfeng
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.05a
    • /
    • pp.14-14
    • /
    • 2011
  • W (tungsten)-alloys will be the most promising plasma facing armor materials in highly loaded plasma interactive components of the next step fusion reactors due to its high melting point, high sputtering resistance and low deuterium/tritium retention. The bonding technology of tungsten to Cu alloy was one of the key issues. In this paper, W/CuCrZr diffusion bonding has been performed successfully by inserting pure metal interlay. The joint microstructure, interfacial elements migration and phase composition were analyzed by SEM, EDS, XRD, and the joint shear strength and micro-hardness were investigated. The mock-ups were fabricated successfully with diffusion bonding and the cladding technology respectively, and the high heat flux test and thermal fatigue test were carried out under actively cooling condition. When Ni foil was used for the bonding of tungsten to CuCrZr, two reaction layers, Ni4W and Ni(W) layer, appeared between the tungsten and Ni interlayer with the optimized condition. Even though Ni4W is hard and brittle, and the strength of the joint was oppositely increased (217 MPa) due primarily to extremely small thicknesses (2~3 ${\mu}m$). When Ti foil was selected as the interlayer, the Ti foil diffused quickly with Cu and was transformed into liquid phase at $1,000^{\circ}C$. Almost all of the liquid was extruded out of the interface zone under bonding pressure, and an extremely thin residual layer (1~2 ${\mu}m$) of the liquid phase was retained between the tungsten and CuCrZr, which shear strength exceeded 160 MPa. When Ni/Ti/Ni multiple interlayers were used for bonding of tungsten to CuCrZr, a large number of intermetallic compound ($Ni_4W/NiTi_2/NiTi/Ni_3T$) were formed for the interdiffusion among W, Ni and Ti. Therefore, the shear strength of the joint was low and just about 85 MPa. The residual stresses in the clad samples with flat, arc, rectangle and trapezoid interface were estimated by Finite Element Analysis. The simulation results show that the flat clad sample was subjected maximum residual stress at the edge of the interface, which could be cracked at the edge and propagated along the interface. As for the rectangle and trapezoid interface, the residual stresses of the interface were lower than that of the flat interface, and the interface of the arc clad sample have lowest residual stress and all of the residual stress with arc interface were divided into different grooved zones, so the probabilities of cracking and propagation were lower than other interfaces. The residual stresses of the mock-ups under high heat flux of 10 $MW/m^2$ were estimated by Finite Element Analysis. The tungsten of the flat interfaces was subjected to tensile stresses (positive $S_x$), and the CuCrZr was subjected to compressive stresses (negative $S_x$). If the interface have a little microcrack, the tungsten of joint was more liable to propagate than the CuCrZr due to the brittle of the tungsten. However, when the flat interface was substituted by arc interfaces, the periodical residual stresses in the joining region were either released or formed a stress field prohibiting the growth or nucleation of the interfacial cracks. Thermal fatigue tests were performed on the mock-ups of flat and arc interface under the heat flux of 10 $MW/m^2$ with the cooling water velocity of 10 m/s. After thermal cycle experiments, a large number of microcracks appeared at the tungsten substrate due to large radial tensile stress on the flat mock-up. The defects would largely affect the heat transfer capability and the structure reliability of the mock-up. As for the arc mock-up, even though some microcracks were found at the interface of the regions, all microcracks with arc interface were divided into different arc-grooved zones, so the propagation of microcracks is difficult.

  • PDF