• Title/Summary/Keyword: melting behavior

Search Result 349, Processing Time 0.028 seconds

A Numerical Study of a Vehicle Windshield Defrosting Mechanism (자동차 전면유리 제상 메커니즘의 수치해석 연구)

  • Kang, Seung-Jae;Jun, Yong-Du;Lee, Kum-Bae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.151-155
    • /
    • 2010
  • Adequate visibility through a vehicle windshield and frost melting period are critical aspects of major design parameters. To make progress in this area, a good understanding of the flow behavior and heat transfer characteristics produced by the HVAC module is required. The computational study was used to perform the parametric investigation into the defroster nozzle's performance with a full-scale model. The study highlights the drawbacks of current designs and points the way to improve passive defrosting mechanism. The results show that the current design of the defroster nozzles deliver the maximum airflow in the vicinity of the lower part of the windshield, which yields unsatisfactory visibility. Defrosting performance was excellent when the injection angle of the defrost nozzle was 45 degree. The numerical analysis satisfies the criteria provided by NHTSA.

Study on the Biodegtadable Aliphatic Polyester(III) : Compatibility of Copolyesterethylene/EVA (VA15%) Blends (생분해성 지방족 폴리에스테르에 관한 연구(III) : Copolyesterethylene/EVA(VA15%) 블랜드의 상용성)

  • Park, Tae-Wook;Kang, Hye-Jung;Kim, Yong-Joo;Lee, Chi-Giu
    • Applied Chemistry for Engineering
    • /
    • v.5 no.5
    • /
    • pp.889-898
    • /
    • 1994
  • Melt blends of copolyesterethylene(CPEE) and ethylene vinylacetate copolymer(EVA) with 15% vinylacetate content were prepared in the ratio of 0 to 100% CPEE with 10% interval for the purpose of obtaining useful biodegradable polymer system. Miscibility behavior of melt blend samples has been studied by observing the melting temperature change and cold crystallization temperature with differential scanning calorimetry. From the results of thermal analysis, it was shown that each 10% blend composition of CPEE and EVA had the partially miscibility. Useful compatibility has been observed in all blend composition except the samples of 50~80 % CPEE composition from the mechanical property study. Compatibility of these blend has been also observed with scanning electron microscopy. Biodegradability of CPEE/EVA blends has been evaluated by observing the change of specimen with Image analyzer before and after the inoculation with specific microorganism.

  • PDF

Effects of Copper and Copper-Alloy on Friction and Wear Characteristics of Low-Steel Friction Material (로우스틸 마찰재의 마찰 및 마모특성에 미치는 구리계 재료의 영향)

  • Jung, Kwangki;Lee, Sang Woo;Kwon, Sungwook;Choi, Sungwoo;Lee, Heeok
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.207-214
    • /
    • 2020
  • In this study, we investigated the effects of copper and copper-alloy on the frictional and wear properties of low-steel friction material. The proportions of copper and copper-alloy in the brake friction materials used in passenger cars are very high (approximately 5-20% weight), and these materials have significant effects on friction and wear characteristics. In this study, the effects of cupric ingredients, such as the copper fiber and brass fiber, are investigated using the friction materials based on commercial formulations. After the copper and brass fibers from the same formulation were removed, the frictional and wear characteristics were evaluated to determine the influence of the copper and copper-alloy. We evaluated the frictional and wear characteristics by simulating various braking conditions using a 1/5 scale dynamometer. The results show that the friction material containing copper and brass fibers have excellent frictional stability and a low wear rate compared to the friction material that does not contain copper and brass fibers. These results are attributed to the excellent ductility, moderate melting point, high strength, and excellent thermal conductivity of copper and copper-alloy. We analyzed the surfaces of the friction materials before and after the performing the friction tests using a scanning electron microscope-energy dispersive X-ray spectroscope, confocal microscope, and roughness tester to verify the frictional behavior of copper and copper-alloy. In future studies, it will be applied to the development of copper-free friction materials based on the results of this study.

A Study on the Synthesis and Functional Properties of the Thermotropic Polyurethanes (Thermotropic Polyurethanes의 合成과 機能性에 관한 硏究)

  • Lee, Jong Back;Song, Jin Cherl;Choi, Dae Woong
    • Textile Coloration and Finishing
    • /
    • v.8 no.2
    • /
    • pp.1-7
    • /
    • 1996
  • Thermotropic liquid-crystalline polyurethanes were synthesized by the polyaddition reaction of such para-substiuted diisocyanate monomer as 1,4-phenylene diisocyanate(1,4-PDI) and 2,5-tolylene diisocyanate(2,5-TDI), with 4,4'-bis($\omega$-hydroxyalkoxy)biphenyls(BPm: $HOC_{m}OC_{6}H_{4}C_{6}H_{4}OC_{m}H_{2m}OH$; m is the carbon number of the hydroxyalkoxy group). These polyurethanes have mesogenic biphenyl units in the main chain. Properties of polymers were studied by differential scanning calorimetry, wide-angle X-ray scattering, thermogravimetic analysis, polarizing microscopy, and infraed spectroscopy. DSC thermograms for these polymers exhibited two endothermic peaks corresponding to phase transitions of melting and isotropization. Mesomorphic behavior of the polyurethanes were also observed under the polarizing microscope. For example, polyurethane 2,5-YDI/BP5 with [$\theta$]=0.44 prepared from 2,5-TDI and BP5 exhibited a liquid crystalline phase from 194 to 205$^{\circ}C$. Infrared spectrum study indicated that the hydrogen bonding between urethane linkages affected the mesomorphism. The thermostabilities of polyurethanes 2,5-TDI/BP5 and 1,4-PDI/BP5 were measured at a heating rate of 1$0^{\circ}C$/min in air. The temperatures of 5% weight loss for 2,5-TDI/BP5 and 1,4-PDI/BP5 were 297 and 334$^{\circ}C$, respectively.

  • PDF

Effects of microstructures of the sintered rod on the single crystal grown by the floating zone method (Floating zone법에 의한 결정성장시 소결봉의 미세구조에 의한 영향)

  • 신재혁;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.5 no.3
    • /
    • pp.250-260
    • /
    • 1995
  • In general, a sintered rod is used as a feed in the growth of crystals by the floating zone(FZ) method. The sintering condition of the feed rod affected the stability of molten zone because it influenced the interface shape between the feed and the melt during the crystal growth. In this study, rutile and ruby crystals were chosen as samples to analyze the effect of the microstructures of the feed rods. In sintering of the feed rod for the growth of rutile and ruby single crystals, the difference of grain size between the inner and the outer region of the feed rod increased with the sintering temperature and dwelling time. As a result, it altered melting behavior of the feed. The uniform grain size of the sintered rod was necessary for the optimum growing condition of crystals. The effect of pores in the feed rod was not a dominant factor to grow crystals by the FZ method, which was confirmed by growing crystals with nonsinterd rods as feeds.

  • PDF

Fabrication and Characterization of MgO-Al2O3-SiO2-ZrO2 Based Glass Ceramic (MgO-Al2O3-SiO2-ZrO2계 글라스 세라믹의 제조 및 특성 평가)

  • Yoon, Jea-Jung;Chun, Myoung-Pyo;Shin, Hyo Soon;Nahm, San
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.712-717
    • /
    • 2014
  • Glass ceramic has a high mechanical strength and low sintering temperature. So, it can be used as a thick film substrate or a high strength insulator. A series of glass ceramic samples based on MgO-$Al_2O_3-SiO_2-ZrO_2$ (MASZ) were prepared by melting at $1,600^{\circ}C$, roll-quenching and heat treatment at various temperatures from $900^{\circ}C$ to $1,400^{\circ}C$. Dependent on the heat treatment temperature used, glass ceramics with different crystal phases were obtained. Their nucleation behavior, microstructure and mechanical properties were investigated with differential thermal analysis (DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Vicker's hardness testing machine. With increasing the heat treatment temperature of MASZ samples, their hardness and toughness initially increase and then reach the maximum points at $1,300^{\circ}C$, and begin to decrease at above this temperature, which is likely to be due to the softening of glass ceramics. As the content of $ZrO_2$ in MAS glass ceramics increases from 7.0 wt.% to 13 wt.%, Vicker's hardness and fracture toughness increase from $853Kg/mm^2$ to $878Kg/mm^2$ and $1.6MPa{\cdot}m^{1/2}$ to $2.4MPa{\cdot}m^{1/2}$ respectively, which seems to be related with the nucleation of elongated phases like fiber.

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation (분자 동역학 전산모사에 의한 비정질 탄소 필름의 합성거동 연구)

  • 이승협;이승철;이규환;이광렬
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.1
    • /
    • pp.25-34
    • /
    • 2003
  • Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.

Spark Plasma Sintering of Fe-Ni-Cu-Mo-C Low Alloy Steel Powder

  • Nguyen, Hong-Hai;Nguyen, Minh-Thuyet;Kim, Won Joo;Kim, Ho Yoon;Park, Sung Gye;Kim, Jin-Chun
    • Journal of Powder Materials
    • /
    • v.23 no.3
    • /
    • pp.207-212
    • /
    • 2016
  • In this study, Fe-Cu-Ni-Mo-C low alloy steel powder is consolidated by spark plasma sintering (SPS) process. The internal structure and the surface fracture behavior are studied using field-emission scanning electron microscopy and optical microscopy techniques. The bulk samples are polished and etched in order to observe the internal structure. The sample sintered at $900^{\circ}C$ with holding time of 10 minutes achieves nearly full density of 98.9% while the density of the as-received conventionally sintered product is 90.3%. The fracture microstructures indicate that the sample prepared at $900^{\circ}C$ by the SPS process is hard to break out because of the presence of both grain boundaries and internal particle fractures. Moreover, the lamellar pearlite structure is also observed in this sample. The samples sintered at 1000 and $1100^{\circ}C$ exhibit a large number of tiny particles and pores due to the melting of Cu and aggregation of the alloy elements during the SPS process. The highest hardness value of 296.52 HV is observed for the sample sintered at $900^{\circ}C$ with holding time of 10 minutes.

Dielectric Properties in Na2O-B2O3-SiO2 Glass Containing CoO (CoO를 함유한 Na2O-B2O3-SiO2 계 유리의 유전적 특성)

  • Lee, Chanku;Lee, Sudae;Joung, Maeng-Sig
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.1
    • /
    • pp.49-53
    • /
    • 2000
  • Sodium borate silicate glass of composition $10Na_2O-39B_2O_3-50SiO_2-CoO$ and $20Na_2O-14B_2O_3-65SiO_2-CoO$ were prepared by melting oxide mixtures in alumina crucible at $1210^{\circ}C$ in an electric furance in air for 2h, and then quenching in air. The dielectric behavior of the quenched glasses are the subject of the present work. Properties such as dielectric constant and resistivity as a function frequency and temperature are reported. From the dielectric spectra, the glass phase transition temperature has been found to decrease at a rate $Na_2O$ 20 mol% and the dielectric constants increase with increasing $Na_2O$ content. The frequency dependent resistivity response of glass exhibits a non-Debye type relaxation.

  • PDF

Preparation and Performance Improvement of Polylactic acid based composites by stereocomplex (스테레오 컴플렉스를 이용한 폴리유산 복합재 제조 및 성능 개선)

  • Hong, Chae-Hwan;Kim, Yeon-Hee;Park, Jun-Seo;Nam, Byeong-Uk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.3
    • /
    • pp.1671-1676
    • /
    • 2015
  • A unique crystallization behavior of poly(L-lactide)(PLLA)/poly(D-lactide)(PDLA) stereocomplex(SC) was observed when a PLLA/PDLA blend was subjected to the specific melting conditions. Therefore, we tried to blend PLLA and PDLA at overall composition to form PLA stereocomplexes. Moreover, impact modifier and reinforcement materials such as talc and glass fiber added to enhance the mechanical and thermal properties such as impact strength and heat distortion temperature(HDT). As a result, we got one representative result, one composite recipe with HDT $115^{\circ}C$. For more economic technology, we tried to blend PLLA and Polypropylene at overall composition and we got another representative result which could be applied to current PP/talc composites and ABS materials. The core technology of this might be the well dispersion of glass fibers into the matrix resin such as PP, PLLA and impact strength modifier.