Browse > Article

Investigation of Amorphous Carbon Film Deposition by Molecular Dynamic Simulation  

이승협 (한국과학기술연구원 미래기술연구본부)
이승철 (한국과학기술연구원 미래기술연구본부)
이규환 (한국과학기술연구원 미래기술연구본부)
이광렬 (한국과학기술연구원 미래기술연구본부)
Publication Information
Journal of the Korean Vacuum Society / v.12, no.1, 2003 , pp. 25-34 More about this Journal
Abstract
Deposition behavior of hard amorphous carbon film was investigated by molecular dynamic simulation using Tersoff potential which was suggested for the interaction potential between carbon atoms. When high energy carbon atoms were collided on diamond (100) surface, dense amorphous carbon film could be obtained. Physical properties of the simulated carbon film were compared with those of the film deposited by filtered cathodic arc process. As in the experimental result, the most diamond-like film was obtained at an optimum kinetic energy of the incident carbon atoms. The optimum kinetic energy was 50 eV, which is comparable to the experimental observation. The simulated film was amorphous with short range order of diamond lattice. At the optimum kinetic energy condition, we found that significant amount of carbon atom were placed at a metastable site of distance 2.1 $\AA$. By melting and quenching simulation of diamond lattice, it was shown that this metastatic peak is Proportional to the quenching rate. These results show that the hard and dense diamond-like film could be obtained when the localized thermal spike due to the collision of high energy carbon atom can be effectively dissipated to the lattice.
Keywords
Amorphous carbon; Molecular dynamics; Computational simulation; Filtered cathodic arc (FVA);
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ J,K.Shin;C.S.Lee;K.R.Lee;K.Y.Eun ] / Appl. Phys. Lett.   DOI   ScienceOn
2 /
[ R.L.Boxman;V.Zhitomisky;B.Alterkop;E.Gidalevich;L.Beilis;M.Keidar;S.Goldsmith ] / Surf. Coat. Technol.
3 /
[ D.R.Mckenzie;D.Muller;B.A.Pailthorpe ] / Phys. Rev. Lett.   DOI   ScienceOn
4 /
[ N.A.Marks ] / Phys. Rev.
5 /
[ S.R.P.Silva;J.Robertson;W.I.Milne;G.A.Amaratunga ] / Amorphous Carbon: State of Art
6 /
[ S.Kaplan;F.Jansen;M.Machonkin ] / Appl. Phys. Lett.   DOI
7 /
[ P.J.Fallon;V.S.Veerasamy;C.A.Davis;J.Robertson;G.A.J.Amaratunga;W.L.Milne;J.Koskinen ] / Phys. Rev.
8 /
[ J.Rifkin ] / Center for material simulation
9 /
[ J.K.Walters;K.W.R.Glikes;J.D.Wicks;R.J.Newport ] / Phys. Rev.
10 /
[ J.Tersoff ] / Phys. Rev.
11 /
[ R.Lossy;D.L.Pappas;R.A.Roy;J.P.Doyle;J.J.Cuomo;J.Bruley ] / J. Appl. Phys.   DOI   ScienceOn
12 /
[ N.A.Marks;D.R.McKenzie;B.A.Pailthorpe;M.Bernasconi;M.Parrimello ] / Phys. Rev.
13 /
[ J.Tersorff ] / Phys. Rev. Lett.   DOI   ScienceOn
14 /
[ P.R.Chalker ] / Presented at NATO Advanced Study Institute in to Diamond and Diamond-like Films
15 /
[ T.Y.Tsui;G.M.Pharr;W.C.Oliver;C.S.Bhatia;R.L.White;S.Anders;A.Anders;I.G.Brown ] / Mat. Res. Soc. Symp. Proc.
16 /
[ S.H.Lee;S.C.Lee;K.R.Lee;K.H.Lee;J.K.Lee ] / Proc. of International Conference of Computational Nanotechnology
17 /
[ P.J.Martin;A.Bendavid ] / Thin Solid Film   DOI
18 /
[ K.Kohary;S.Kugler ] / Phys. Rev.
19 /
[ D.Snow;M.Major;L.Green ] / Microelectronic Engr.
20 /
[ S.Anders;J.Diaz;J.W.AgerⅢ;R.Y.Lo;D.B.Bogy ] / Appl. Phys. Lett.   DOI   ScienceOn
21 /
[ J.Robertson ] / J. Adv. Phys.   DOI   ScienceOn
22 /
[ D.R.Mckenzie;Y.Yin;N.A.Marks;C.A.Davis;E.Kravtchinskaia;B.A.Pailthorpe;G.A.J.Amaratunga ] / J. Non-cryst. Solids
23 /
[ N.A.Marks;D.R.McKenzie;B.A.Pailthorpe;M.bemascomi;M.Parrinello ] / Phys. Rev. Lett.   DOI   ScienceOn
24 /
[ B.K.Tay;X.Shi;H.S.Tan;H.S.Yangand;Z.Sun ] / Surf. Coat. Technol.   DOI   ScienceOn
25 /
[ H.P.Kaukonen;R.M.Nieminen ] / Phys. Rev. Lett.   DOI   ScienceOn
26 /
[ G.M.Pharr;D.L.Callahan;S.D.McAdams;T.Y.Tsui;S.Anders;J.W.Ager Ⅲ;I.G.Brown;C.S.Bhatia;S.R.P.Silva;J.Robertson ] / Appl. Phys. Lett.   DOI   ScienceOn
27 /
[ J.W.AgerⅢ;S.Anders;A.Anders;I.G.Brown ] / Appl. Phys. Lett.   DOI   ScienceOn
28 /
[ H.Tsai;D.B.Bogy ] / J. Vac. Sci. Technol.