• 제목/요약/키워드: melt mixing.

검색결과 144건 처리시간 0.027초

폴리프로필렌/몬모릴로나이트 나노복합체의 제조 및 물성 (Preparation and Characterization of Polypropylene/Montmorillionite Nanocomposites)

  • 이상욱;오인환;이재홍;최길영;이성구
    • 폴리머
    • /
    • 제29권3호
    • /
    • pp.271-276
    • /
    • 2005
  • 폴리프로릴렌(Polypropylene, PP)과 몬모릴로나이트(Montmorillonite, MMT)의 나노복합체를 용융 혼합 방법으로 제조하였다. MMT는 dimethyl hydrogenated tallow 2-eaylhexyl ammonium으로 개질된 MMT(Cloisite 15A)를 사용하였다. 상용 화제로는 telechelic OH 그룹을 갖는 폴리올레핀 올리고머를 사용하였다. X선 회절 패턴의 분석과 TEM 사진을 통해 MMT의 박리 정도를 조사하였다. 상용화제의 함량이 25 phr일 경우 MMT의 박리가 잘 일어나는 것을 알 수 있었다. 열중량분석법(TGA)으로 측정한 열안정성은 MMT의 함량이 5 phr까지 증가할수록 우수해짐을 확인하였다. 복합전단 점도와 저장 탄성률은 상용화제의 함량이 감소할수록, MMT의 함량이 증가할수록 우수해지는 것으로 나타났다.

은 카바메이트 복합체를 이용한 라디칼 중합에 의한 은/폴리스티렌 나노복합체의 제조 (Preparation of Silver/Polystyrene Nanocomposites by Radical Polymerization Using Silver Carbamate Complex)

  • 박헌수;박형석;공명선
    • 폴리머
    • /
    • 제34권2호
    • /
    • pp.144-149
    • /
    • 2010
  • Ag/polystyrene(PS) 나노복합체를 110 $^{\circ}C$의 가열법에 의하여 silver 2-ethylhexylcarbamate(Ag-CB) 복합체의 환원과 동시에 라디칼 중합을 진행하여 제조하였다. 또한, 이러한 전통적인 가열법과는 대조적으로 마이크로파를 조사하여 스티렌 단량체의 중합이 진행됨이 없이 은 나노입자가 잘 분산된 콜로이드 스티렌 용액을 제조할 수 있었다. 이렇게 단지 마이크로파를 조사하여 은 나노입자를 제조하는 방법은 반응기 내의 전체 용액 속에서 균일하고 빠르게 진행되어 매우 입자가 작고 균일한 은 나노콜로이드 용액을 제조할 수 있었다. 또한, 연속적으로 얻어진 은 나노입자를 포함하는 단량체 용액을 라디칼 중합시킴으로써 PS 고분자 매트릭스에 은 나노입자가 잘 분산된 Ag/PS 나노복합체를 얻을 수 있었다. Ag/PS(0.1/100) 나노복합체는 Ag/PS(4.0/100)를 마스터배치로 사용하여 용융-혼합 방법에 의하여 성공적으로 제조할 수 있었으며 그러한 나노복합체를 UV-VIS spectroscopy, TEM, 그리고 XRD를 이용하여 확인하였다.

금속기복합재료의 피로균열성장거동에 대한 응력비 영향에 관한 연구 (A Study on the Stress Ratio effect of Metal Matrix Composites on Fatigue Crack Growth Behavior)

  • 최용범;허선철;윤한기;박원조
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.155-160
    • /
    • 2002
  • Metal matrix composites had generated a lot of interest in recent times because of significant in specific properties. It was also highlighted as the materials of frontier industry because strength, heat-resistant, corrosion-resistant, wear-resistant were superiored. In this study the strength properties of $Al_{18}B_4O_{33}/AC4CH$ were represented mixing the binder of $Al_2O_3$ and $TiO_2$. It was also fabricated by squeeze casting. $Al_{18}B_4O_{33}/AC4CH$ was fabricated at the melt temperature of $760^{\circ}C$ the perform temperature of $700^{\circ}C$ and mold temperature of $200^{\circ}C$ under the pressure of 83.4MPa and observed SEM. Fatigue crack growth rate tests on compact tension specimen(half-size) of thickness 12.5mm were conducted by using sinusoidal waveform. Compact tension specimens(half-size) were used and fatigue crack growth rate da/dN and stress intensity factor range ${\Delta}K$ were analyzed concerning to the R value of 0.1 and 0.05. In order to find out the value of ${\Delta}K$, load amplitude constant method was applied by the standard fatigue testing method describes in ASTM E647-95a. As the results of this study, Fatigue crack growth rate increased with in creasing the load ratio, Consequently, At equivalent stress intensity factors, the fatigue crack growth rates in MMC were faster than those of AC4CH alloy. then the fatigue life and the fatigue crack growth rate was investigated using scanning election microscopy(SEM)

  • PDF

Blends containing two thermotropic liquid crystalline polymers: Effects of transesterification on miscibility and rheology

  • Hsieh, Tsung-Tang;Carlos Tiu;Hsieh, Kuo-Huang;George P. Simon
    • Korea-Australia Rheology Journal
    • /
    • 제11권3호
    • /
    • pp.255-263
    • /
    • 1999
  • Blends of two thermotropic liquid crystalline polymers, HX2000 and Vectra A950, were prepared by melt blending. Effects of transesterification on these blends are investigated by comparing properties of the blends with and without the addition of an inhibitor, in terms of blend miscibility and rheology. Both the uninhibited and inhibited blends are found to be largely immiscible with very limited miscibility in HX2000-rich phase. No strong evidence indicates the occurrence of transesterification in the blends in the solid state. Dynamic rheological behaviour, such as shear storage modulus (G') and shear loss modulus (G") as a function of frequency, of the blends are interpreted by a three-zone model. HX2000 shows terminal-zone and plateau-zone behaviour, whilst Vectra A950 shows plateau-zone and transition-zone behaviour. The un- inhibited blends show plateau-zone behaviour up to 50% Vectra A950 content and the inhibited blends show plateau-zone behaviour up to 60% Vectra A950 content. Compositional dependence of the complex viscosities of the uninhibited and inhibited blends displayed positive deviations from additivity, which is a characteristic feature for the immiscible thermoplastic blends. When under steady shear, both the uninhibited and inhibited blends show shear thinning behaviour and their viscosities decrease monotonically with the addition of Vectra A950. Compositional dependence of the steady shear viscosities of the two sets of blends displayed negative deviations from additivity and the uninhibited blends were more viscous than the inhibited blends for the full composition range. Although limited agreement with the Cox-Merz rule is found for the inhibited blends, these two sets of blends, in general, do not follow the rule due to their liquid crystalline order and two-phase morphology. Despite being immiscible blends, transesterification, such as polymerization, in the blends might occur during the rheological characterization, supported by the facts that uninhibited blends show HX2000-dominant behaviour at lower Vectra A950 content and are more viscous than the inhibited blends. The addition of transesterification inhibitor in such blends is advised if only physical mixing is desired.ired.

  • PDF

탄산칼슘 분말을 충진시킨 열가소성 탄성체 복합재의 제조 및 차음 특성 (Preparation and Sound Insulation Properties of Thermoplastic Elastomer Composites with CaCO3 Filler)

  • 최정우;황연
    • 한국재료학회지
    • /
    • 제20권9호
    • /
    • pp.467-471
    • /
    • 2010
  • Composites of ceramic powders and an elastomer-based matrix were prepared by mixing $CaCO_3$ powders with polyethylene and polypropylene elastomers, and their mechanical and sound insulation properties were measured. $CaCO_3$ powders with 0.7 ${\mu}m$ and 35 ${\mu}m$ particle size were added to elastomers up to 80 wt%. Scanning electron microscopy photographs showed uniform distribution of the $CaCO_3$ powders in the matrix. While density and surface hardness increased, melt index, tensile strength and elongation of the composites decreased as the amount of added $CaCO_3$ powders increased. As more $CaCO_3$ powders were added sound transmission loss of the composites increased owing to the increase of density. Addition of 0.7 ${\mu}m$ sized $CaCO_3$ powders resulted in a slightly higher transmission loss than the addition of 35 ${\mu}m$ sized powders because of the increased interface area between the elastomer matrix and the $CaCO_3$ powders. Composites with a polyethylene matrix showed higher transmission loss than those with a polypropylene matrix because the tensile strength and hardness of the polyethylene-based composites were low and their elongation was high.

Hydroxyl Terminated Polybutadiene/(설탕 또는 탄산칼슘) 현탁계의 유변물성 및 경화특성 (Rheology and Curing of Hydroxyl Terminated Polybutadiene/(Sugar or Calcium Carbonate) Suspension)

  • 이상묵;홍인권;이재욱;정원복
    • 폴리머
    • /
    • 제38권4호
    • /
    • pp.417-424
    • /
    • 2014
  • 결합제로 열경화성의 hydroxyl terminated polybutadiene(HTPB)을 사용한 고농축 복합화약 시뮬란트의 조성 및 공정조건에 따른 반응성과 유변학적 거동을 연구하였다. 충전제로서 평균입도비가 각각 10:1과 25:1인 bimodal의 탄산칼슘과 설탕을 사용하여 용융혼련기 내에서 최대 75 v%까지 충전하였다. 평판-평판 레오미터를 사용하여 유변물성을 관찰한 바 bimodal 현탁계를 구성할 경우 unimodal 현탁계보다 훨씬 낮은 상대점도 값을 나타내었으며 총 충전제 양 중 작은 입자 분율이 0.25에서 최저 값을 보였다. 경화 온도가 높을수록 경화 개시 및 완료가 빨랐으며 토크가 낮게 유지되었고 경화로 인한 온도 상승 폭이 작았다.

생분해성 지방족 폴리에스테르에 관한 연구(V) : Copolyesterethylene/LDPE 블렌드의 열적 성질 및 기계적 성질 (Study on the Biodegradable Aliphatic Polyester(V): Thermal and Mechanical Properties of Copolyesterethylene/LDPE Blend)

  • 박태욱;강혜정;김용주;이치규
    • 공업화학
    • /
    • 제5권6호
    • /
    • pp.1068-1077
    • /
    • 1994
  • 생분해성 고분자의 실용화 검토를 위하여 생분해성 Copolyesterethylene(CPEE)과 LDPE를 0~100%까지 10% 간격으로 전조성에 걸쳐 용융 블렌드하였다. 각 조성에서 블렌드한 시료의 녹는점 변화, 용융 엔탈피, 결정화 온도 및 결정화 엔탈피를 시차주사열량계고 측정하여 miscibility에 관하여 고찰하였으며 만능시험기를 이용하여 인장강도 및 신장률을 측정하였다. 열분석 결과로부터 CPEE의 조성이 30%일 때까지 약간의 miscibility를 보임을 알 수 있었으며, 인장 강도값으로부터는 CPEE조성이 30~80%를 제외한 조성에서 유용한 compatibility를 갖는 것을 알았다. SEM 관찰을 통한 각 조성에서의 형태학적 모습으로부터 이들 상용성의 결과를 확인하였으며, 또한 CPEE/LDPE 블렌드 각 조성에 대한 생분해성을 미생물 접종 4주 후의 중량감소율을 측정하여 확인하였다.

  • PDF

자체반응열 고온합성법에 의한 탄화티타늄 합성에 관한 메카니즘 (Mechanism on the Synthesis of Titanium Carbide by SHS (Self-Propagating High-Temperature Synthesis) Method)

  • 하호;황규민;한희동
    • 한국세라믹학회지
    • /
    • 제31권11호
    • /
    • pp.1249-1258
    • /
    • 1994
  • Titanium carbide was synthesized by reacting the prepared titanium powder and carbon black using SHS method sustains the reaction spontaneously, utilizing heat generated by the exothermic reaction itself. In this process, the effect of the particle size of titanium powder on combustion temperature and combustion wave velocity was investigated. By controlling combustion temperature and combustion wave velocity via mixing Ti and C powder with TiC, the reaction kinetics of TiC formation by SHS method was considered. Without reference to the change of combustion temperature and combustion wave velocity, TiC was easily synthesized by combustion reaction. As the particle size of titanium powder was bigger, or, as the amount of added diluent(TiC) increased, combustion temperature and combustion wave velocity were found to be decreased. The formation of TiC by combustion reaction in the Ti-C system seems to occur via two different mechanisms. At the beginning of the reaction, when the combustion temperatures were higher than 2551 K, the reaction was considered to be controlled by the rate of dissolution of carbon into a titanium melt with an apparent activation energy of 148 kJ/mol. For combustion temperatures less than 2551 K, it was considered to be controlled by the atomic diffusion rate of carbon through a TiC layer with an apparent activation energy of 355 kJ/mol. The average particle size of the synthesized titanium carbide was smaller than that of the starting material(Ti).

  • PDF

Gold functionalized-graphene oxide-reinforced acrylonitrile butadiene rubber nanocomposites for piezoresistive and piezoelectric applications

  • Mensah, Bismark;Kumar, Dinesh;Lee, Gi-Bbeum;Won, Joohye;Gupta, Kailash Chandra;Nah, Changwoon
    • Carbon letters
    • /
    • 제25권
    • /
    • pp.1-13
    • /
    • 2018
  • Gold functionalized graphene oxide (GOAu) nanoparticles were reinforced in acrylonitrile-butadiene rubbers (NBR) via solution and melt mixing methods. The synthesized NBR-GOAu nanocomposites have shown significant improvements in their rate of curing, mechanical strength, thermal stability and electrical properties. The homogeneous dispersion of GOAu nanoparticles in NBR has been considered responsible for the enhanced thermal conductivity, thermal stability, and mechanical properties of NBR nanocomposites. In addition, the NBR-GOAu nanocomposites were able to show a decreasing trend in their dielectric constant (${\varepsilon}^{\prime}$) and electrical resistance on straining within a range of 10-70%. The decreasing trend in ${\varepsilon}^{\prime}$ is attributed to the decrease in electrode and interfacial polarization on straining the nanocomposites. The decreasing trend in electrical resistance in the nanocomposites is likely due to the attachment of Au nanoparticles to the surface of GO sheets which act as electrical interconnects. The Au nanoparticles have been proposed to function as ball rollers in-between GO nanosheets to improve their sliding on each other and to improve contacts with neighboring GO nanosheets, especially on straining the nanocomposites. The NBR-GOAu nanocomposites have exhibited piezoelectric gauge factor (${GF_{\varepsilon}}^{\prime}$) of ~0.5, and piezo-resistive gauge factor ($GF_R$) of ~0.9 which clearly indicated that GOAu reinforced NBR nanocomposites are potentially useful in fabrication of structural, high temperature responsive, and stretchable strain-sensitive sensors.

Preparation of Highly Tough Ethylene Vinyl Acetate (EVA) Heterogeneous Cation Exchange Membranes and Their Properties of Desalination

  • Kim, In Sik;Ko, Dae Young;Canlier, Ali;Hwang, Taek Sung
    • Korean Chemical Engineering Research
    • /
    • 제56권3호
    • /
    • pp.361-369
    • /
    • 2018
  • A manufacturing method has been devised to prepare novel heterogeneous cation exchange membranes by mixing ethylene vinyl acetate (EVA) copolymers with a commercial cation exchange resin. Optimum material characteristics, mixture ratios and manufacturing conditions have been worked out for achieving favorable membrane performance. Ion exchange capacity, electrical resistance, water uptake, swelling ratio and tensile strength properties were measured. SEM analysis was used to monitor morphology. Effects of vinyl acetate (VA) content, melt index (MI) and ion exchange resin content on properties of heterogeneous cation exchange membranes have been discussed. An application test was carried out by mounting a selected membrane in a membrane capacitive deionization (MCDI) system to investigate its desalination capability. 0.92 meq/g of ion exchange capacity, $8.7{\Omega}.cm^2$ of electrical resistance, $40kgf/cm^2$ of tensile strength, 19% of swelling ratio, 42% of water uptake, and 56.4% salt removal rate were achieved at best. VA content plays a leading role on the extent of physical properties and performance; however, MI is important for having uniform distribution of resin grains and achieving better ionic conductivity. Overall, manufacturing cost has been suppressed to 5-10% of that of homogeneous ion exchange membranes.