Blends containing two thermotropic liquid crystalline polymers: Effects of transesterification on miscibility and rheology

  • Hsieh, Tsung-Tang (Department of Chemical Engineering, Monash University) ;
  • Carlos Tiu (Department of Chemical Engineering, Monash University) ;
  • Hsieh, Kuo-Huang (Department of Chemical Engineering, National Taiwan University) ;
  • George P. Simon (Department of Material Engineering, Manash University)
  • Published : 1999.09.01

Abstract

Blends of two thermotropic liquid crystalline polymers, HX2000 and Vectra A950, were prepared by melt blending. Effects of transesterification on these blends are investigated by comparing properties of the blends with and without the addition of an inhibitor, in terms of blend miscibility and rheology. Both the uninhibited and inhibited blends are found to be largely immiscible with very limited miscibility in HX2000-rich phase. No strong evidence indicates the occurrence of transesterification in the blends in the solid state. Dynamic rheological behaviour, such as shear storage modulus (G') and shear loss modulus (G") as a function of frequency, of the blends are interpreted by a three-zone model. HX2000 shows terminal-zone and plateau-zone behaviour, whilst Vectra A950 shows plateau-zone and transition-zone behaviour. The un- inhibited blends show plateau-zone behaviour up to 50% Vectra A950 content and the inhibited blends show plateau-zone behaviour up to 60% Vectra A950 content. Compositional dependence of the complex viscosities of the uninhibited and inhibited blends displayed positive deviations from additivity, which is a characteristic feature for the immiscible thermoplastic blends. When under steady shear, both the uninhibited and inhibited blends show shear thinning behaviour and their viscosities decrease monotonically with the addition of Vectra A950. Compositional dependence of the steady shear viscosities of the two sets of blends displayed negative deviations from additivity and the uninhibited blends were more viscous than the inhibited blends for the full composition range. Although limited agreement with the Cox-Merz rule is found for the inhibited blends, these two sets of blends, in general, do not follow the rule due to their liquid crystalline order and two-phase morphology. Despite being immiscible blends, transesterification, such as polymerization, in the blends might occur during the rheological characterization, supported by the facts that uninhibited blends show HX2000-dominant behaviour at lower Vectra A950 content and are more viscous than the inhibited blends. The addition of transesterification inhibitor in such blends is advised if only physical mixing is desired.ired.

Keywords

References

  1. Polym. Eng. Sci. v.31 Berry, D.;S. Kenig;A. Siegmann
  2. Mol. Cryst. Liq. Cryst. v.72 Billard. J.;A. Blumstein;S. Vilasager
  3. Polym. Eng. Sci. v.34 Bretas, R.E.S.;D. Collias;D.G. Baird
  4. J. Appl. Polym. Sci. v.40 Cheung, M.F.;K.R. Carduner;A. Golovoy;H. Van Oene
  5. J. Rheol. v.37 Cocchini, F.;M.R. Nobile;D. Acuerno
  6. Mol. Cryst. Liq. Cryst. v.157 DeMeuse, M.T.;M. Jaff
  7. ACS Symposium Series v.435 Liquid Crystalline Polymers Demeuse, M.T.;M. Jaffe;Weiss(ed.);C.K. Ober(ed.)
  8. Polym. Adv. Technol. v.1 DeMeuse, M.T.;M. Jaffe
  9. J. Rheol. v.38 Gillnor, J.R.;R.H. Colby;E. Hall;C.K. Ober
  10. J. Rheol. v.29 Gorsis, A.D.;D.G. Baird
  11. J. Polym. Sci. Polym. Phys. Edn. v.28 Hsiao, B.S.;R.S. Stein;K. Duetscher;H. H. Winter
  12. Korea Polym. J. v.6 Hsieh, T.T.;C. Tiu;K.H. Hsieh;G.P. Simon
  13. J. Non-Newt. Fluid Mecf. v.86 Hsieh, T.T.;C. Tiu;G. Simon;R.Y. Wu
  14. Hsieh, T.T.
  15. Viscoelastic Properties of Polymers Ferry, J.D.
  16. Polym. J. v.18 Jin, J.I.;E.J. Choi;K.Y. Lee
  17. J. Rheol. v.33 Kalika, D.S.;L.Nuel;M.M.Denn
  18. Polym. Adv. Technol. v.2 Kenig, S.;M.T. DeMeuse;M. Jaffe
  19. Polymer v.35 Kim, S.S.;C.D. Han
  20. Macromolecules v.20 Kugler, J.;J.W. Gilmer;D. Wiswe;H.G. Zanhmann;K.Hahn;E.W. Fischer
  21. J. Appl. Polym. Sci. v.67 Lee, S.Y.;S.C. Kim
  22. Polym. Eng. Sci. v.37 Lin, Y.G.;H.H. Winter
  23. Macromolecules v.24 MacDonald, W.A.;A.D.W. McLenaghan;G. McLear;R.W. Richard;S.M. King
  24. Thermotropic Liquid Crystalline Polymer Blends Magagnini, P.;F.P.La Mantia(ed.)
  25. Polymer v.33 Porter, R.S.;L. H. Wang
  26. Polym. Eng. Sci. v.29 Porter, R.S.;J. M. Jonza;M. Kimura;C.R. Desper;E.R. George
  27. Adv. Polym. Technol. v.13 Roetting, O.;G. Hinrichsen
  28. Fort. d. Chem. Forsch. v.12 Sackmann, H.;D. Demus
  29. Polym. Eng. Sci. v.34 Shin, B.Y.;I.J. Chung;B.S. Kim
  30. Bri. Polym. J. v.December Wissbrun, K.F.
  31. Polym. Eng. Sci. v.37 Xanthos, M.;V. Tan;A. Ponnusamy
  32. Polym. Bull. v.18 Yoo, Y.D.;S.C. Kim
  33. Polym. Eng. Sci. v.34 Yoshikawa, K.;A. Molnar;A. Eisenberg