DOI QR코드

DOI QR Code

Rheology and Curing of Hydroxyl Terminated Polybutadiene/(Sugar or Calcium Carbonate) Suspension

Hydroxyl Terminated Polybutadiene/(설탕 또는 탄산칼슘) 현탁계의 유변물성 및 경화특성

  • Lee, Sangmook (Division of Chemical Engineering, Dankook University) ;
  • Hong, In-Kwon (Division of Chemical Engineering, Dankook University) ;
  • Lee, Jae Wook (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Jeong, Won Bok (Hanwha Corporation R&D Center, Hanwha Corporation)
  • Received : 2013.10.27
  • Accepted : 2014.01.07
  • Published : 2014.07.25

Abstract

Reactivity and rheological behavior of highly concentrated polymer bonded explosives (PBX) simulant was studied. As a binder, thermosetting hydroxyl terminated polybutadiene (HTPB) was used. By using bimodal $CaCO_3$ (size ratio 10:1) and sugar particles (size ratio 25:1) as fillers, maximum 75 v% filling was possible during melt mixing. The relative viscosities of bimodal suspension were much lower than those of unimodal one and showed minimum values at 0.25 of fine particle fraction. In curing experiment, as curing temperature increased, the time of initiation and completeness of curing reaction became shortened, the torque kept low, and the change of internal temperature decreased.

결합제로 열경화성의 hydroxyl terminated polybutadiene(HTPB)을 사용한 고농축 복합화약 시뮬란트의 조성 및 공정조건에 따른 반응성과 유변학적 거동을 연구하였다. 충전제로서 평균입도비가 각각 10:1과 25:1인 bimodal의 탄산칼슘과 설탕을 사용하여 용융혼련기 내에서 최대 75 v%까지 충전하였다. 평판-평판 레오미터를 사용하여 유변물성을 관찰한 바 bimodal 현탁계를 구성할 경우 unimodal 현탁계보다 훨씬 낮은 상대점도 값을 나타내었으며 총 충전제 양 중 작은 입자 분율이 0.25에서 최저 값을 보였다. 경화 온도가 높을수록 경화 개시 및 완료가 빨랐으며 토크가 낮게 유지되었고 경화로 인한 온도 상승 폭이 작았다.

Keywords

Acknowledgement

Supported by : (주)한화, 국방과학연구소

References

  1. J. Akhavan, The Chemistry of Explosives, 2nd Edition, RSC, Great Britain, 2004.
  2. U. Teipel, Energetic Material: Particle Processing and Characterization, Wiley-VCH, Weinheim, 2005.
  3. A. S. Cumming, J. Aerospace Tech. Management, 1, 161 (2009). https://doi.org/10.5028/jatm.2009.0102161166
  4. W. G. Proud, S. M. Walley, D. M. Williamson, A. L. Collins, and J. W. Addiss, Cent. Eur. J. Energ. Mater., 6, 67 (2009).
  5. D. Spitzer, M. Comet, C. Baras, V. Pichot, and N. Piazzon, J. Phys. Chem. Solids, 71, 100 (2010). https://doi.org/10.1016/j.jpcs.2009.09.010
  6. G. D. Scott, Nature, 188, 908 (1960). https://doi.org/10.1038/188908a0
  7. J. G. Berryman, Phys. Rev. A, 27, 1053 (1983). https://doi.org/10.1103/PhysRevA.27.1053
  8. W. S. Jodrey and E. M. Tory, Phys. Rev. A, 32, 2347 (1991).
  9. C. C. Furnas, Ind. Eng. Chem., 23, 1052 (1931). https://doi.org/10.1021/ie50261a017
  10. R. J. Farris, Trans. Soc. Rheol., 12, 281 (1968). https://doi.org/10.1122/1.549109
  11. R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.
  12. T. M. Kwon, M. S. Jhon, and H. J. Choi, J. Mol. Liq., 75, 115 (1998). https://doi.org/10.1016/S0167-7322(98)82000-X
  13. H. J. Choi, T. M. Kwon, and M. S. Jhon, J. Mater. Sci., 35, 889 (2000). https://doi.org/10.1023/A:1004742223080
  14. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989.
  15. N. Kim, H. Kim, and J. Lee, Kor-Aust Rheol. J., 18, 143 (2006).
  16. M. R. Baer and W. M. Trott, Proc. 12th International Detonation Symposium, Aug 11-16th, San Diego, California, 2002.
  17. S. G. Grantham, C. R. Siviour, W. G. Proud, and J. E. Field, Meas. Sci. Technol., 15, 1867 (2004). https://doi.org/10.1088/0957-0233/15/9/025
  18. J .C. F. Millett and N. K. Bourne, J. Phys. D: Appl. Phys., 37, 2613 (2004). https://doi.org/10.1088/0022-3727/37/18/018
  19. O. U. Colak, Turkish J. Eng. Env. Sci., 28, 55 (2004).
  20. S. A. Sheffield, R. L. Gustavsen, and R. R. Alcon, AIP Conf. Proc., 429, 575 (1998).
  21. J. Corky, W. Riedel, W. S. Hiermaier, P. Weidemaier, and K. Thoma, Shock Compression of Condensed Matter, CP620 (2001).
  22. F. M. Gallant, PhD. Thesis, University of Maryland, College Park, 2003.
  23. K. J. Patenaude, MS Thesis, University of Massachusetts, Lowell, 2001.
  24. K. Hailu, G. Guthausen, W. Becker, and A. Konig, Polym. Test., 29, 513 (2010). https://doi.org/10.1016/j.polymertesting.2010.03.001
  25. S. K. Rath, A. M. Ishack, U. G. suryavansi, L. Chandrasekhar, and M. Patri, Prog. Org. Coat., 62, 393 (2008). https://doi.org/10.1016/j.porgcoat.2008.02.004
  26. C. A. I. Mazali and M. I. Felishberti, Eur. Polym. J., 45, 2222 (2009). https://doi.org/10.1016/j.eurpolymj.2009.05.022
  27. C. K. Bina, K. G. Kannan, and K. N. Ninan, J. Therm. Anal. Calorim., 78, 753 (2004). https://doi.org/10.1007/s10973-005-0442-0
  28. G. E. Downton, J. L. Flores-Luna, and C. J. King, Ind. Eng. Chem. Fundam., 21, 447 (1982). https://doi.org/10.1021/i100008a023
  29. A. Yoshimura and R. K. Prud'homme, J. Rheol., 32, 53 (1988). https://doi.org/10.1122/1.549963
  30. U. Yilmazer and D. M. Kalyon, J. Rheol., 33, 1197 (1989). https://doi.org/10.1122/1.550049
  31. S. Lee, I.-K. Hong, Y. Ahn, and J. W. Lee, Polymer(Korea), 38, 213 (2014).
  32. J. Nanda, A. Biswas, and A. Banerjee, Soft Matter, 9, 4198 (2013). https://doi.org/10.1039/c3sm27050e
  33. S. H. Maron and P. E. Pierce, J. Colloid Sci., 11, 80 (1956). https://doi.org/10.1016/0095-8522(56)90023-X
  34. G. V. Vinogradov and A. Y. Malkin, Rheology of Polymers, Mir Publishers, Moscow, 1980.
  35. V. Sekkar, K. A. Devi, and K. N. Ninan, J. Appl. Polym. Sci., 79, 1869 (2001). https://doi.org/10.1002/1097-4628(20010307)79:10<1869::AID-APP160>3.0.CO;2-7