• Title/Summary/Keyword: melanocortin receptor 1 (MC1R) gene

Search Result 34, Processing Time 0.025 seconds

Investigation of MC1R SNPs and Their Relationships with Plumage Colors in Korean Native Chicken

  • Hoque, M.R.;Jin, S.;Heo, K.N.;Kang, B.S.;Jo, C.;Lee, J.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.26 no.5
    • /
    • pp.625-629
    • /
    • 2013
  • The melanocortin 1 receptor (MC1R) gene is related to the plumage color variations in chicken. Initially, the MC1R gene from 30 individuals was sequenced and nine polymorphisms were obtained. Of these, three and six single nucleotide polymorphisms (SNPs) were confirmed as synonymous and nonsynonymous mutations, respectively. Among these, three selected SNPs were genotyped using the restriction fragment length polymorphism (RFLP) method in 150 individuals from five chicken breeds, which identified the plumage color responding alleles. The neighbor-joining phylogenetic tree using MC1R gene sequences indicated three well-differentiated different plumage pigmentations (eumelanin, pheomelanin and albino). Also, the genotype analyses indicated that the TT, AA and GG genotypes corresponded to the eumelanin, pheomelanin and albino plumage pigmentations at nucleotide positions 69, 376 and 427, respectively. In contrast, high allele frequencies with T, A and G alleles corresponded to black, red/yellow and white plumage color in 69, 376 and 427 nucleotide positions, respectively. Also, amino acids changes at position Asn23Asn, Val126Ile and Thr143Ala were observed in melanin synthesis with identified possible alleles, respectively. In addition, high haplotype frequencies in TGA, CGG and CAA haplotypes were well discriminated based on the plumage pigmentation in chicken breeds. The results obtained in this study can be used for designing proper breeding and conservation strategies for the Korean native chicken breeds, as well as for the developing breed identification markers in chicken.

Identification of Hanwoo (Native Korean Cattle Breed) Beef by Real-time PCR Using the MC1R Gene in 5 Provinces of South Korea

  • Park, Jung-Min;Shin, Jin-Ho;Lee, Dan-Won;Song, Jae-Chul;Suh, Hyung-Joo;Chang, Un-Jae;Kim, Jin-Man
    • Food Science of Animal Resources
    • /
    • v.29 no.6
    • /
    • pp.668-672
    • /
    • 2009
  • This paper describes the differentiation between native Korean cattle (Hanwoo) and Holsteins or imported cattle using the real-time polymerase chain reaction (PCR) by targeting the sequence of the melanocortin 1 receptor (MC1R) gene. A rapid and accurate method was developed to identify Hanwoo by genotyping the DNA extracted from 295 commercial beef samples (obtained from 5 provinces in South Korea) labeled as Hanwoo beef. The results of real-time PCR assays for the proportions of Hanwoo were 84, 85.7, 95, 91.4, and 90% in the areas of Seoul, Joongbu, Youngnam, Honam, and Chungcheong, respectively. Thus, the beef samples from 295 butcher shops, which asserted to only sell Hanwoo, showed that 259 of 295 samples were of the Hanwoo beef gene type (T-type) and 36 of 295 samples were Holsteins of imported dairy cattle gene types (C-type or C/T type). In conclusion, the proportion of Hanwoo beef was 87.8% and the proportion of Holstein or imported dairy cattle meat was 12.2% (C-type: 9.8%, C/T-type: 2.4%). Generally, most consumers can not differentiate imported meat from Hanwoo beef. Therefore, Hanwoo beef and imported dairy cattle meat that is sold in butcher shops should have mandatory identification by using MC1R genotyping based on real-time PCR.

Genetic Variations of Chicken MC1R Gene and Associations with Feather Color of Korean Native Chicken (KNC) 'Woorimatdag' (토종 '우리맛닭' 부계 및 실용계에서 MC1R 유전자 변이 및 모색과의 연관성 분석)

  • Park, Mi Na;Kim, Tae-Hun;Lee, Hyun-Jeong;Choi, Jin Ae;Heo, Kang-Nyeong;Kim, Chong-Dae;Choo, Hyo-Jun;Han, Jae-Yong;Lee, Taeheon;Lee, Jun-Heon;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.40 no.2
    • /
    • pp.139-145
    • /
    • 2013
  • There are several loci controlling the feather color of birds, of which one of the most studied is Extended black (E) encoding the melanocortin 1-receptor (MC1R). Mutations in this gene affect the relative distribution of eumelanin, phaeomelanin. The association of feather color and sequence polymorphism in the melanocortin 1-receptor (MC1R) gene was investigated using Korean native chicken H breed (H_PL) and 'Woorimatdag' commercial chickens (Woorimatdag_CC). In order to correlate gene mutation to Korean native chicken feather color, single nucleotide polymorphism (SNP) from MC1R gene sequence were investigated. A total of 307 birds from H_PL and Woorimatdag_CC were used. H_PL have black, black-brown feather color and Woorimatdag_CC have black with brown spots or brown with black spots. There are 6 SNPs in MC1R gene, locus T69C, C212T, A274G, G376A, G636A, T637C. 3 SNPs are nonsynonymous that change amino acid. But it is difficult to find correlation of feather color and polymorphisms. It will be needed to increase the population of Korean native chicken H breed and correlation analysis of genetic variation with feather colors.

Regulation of Proopiomelanocortin and Melanocortin 1 Receptor by UVB: Inhibitory Effect of Antioxidants

  • Funasaka, Yoko
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.201-204
    • /
    • 2002
  • Epidermal cells produce a panel of antioxidants as well as cytokines after UVB irradiation, which counteract reactive oxygen species, however, how these antioxidants might regulate melanogenesis is unclear. An important constituent of the cellular antioxidant buffering system which controls the redox state of proteins is thioredoxin (TRX), a 13-kD protein that catalyzes thiol-disulfide exchange reactions, regulates activation of transcription factors, and possesses several other biological functions similar to cytokines. TRX suppressed the UVB-induced production and secretion of $\alpha$-melanocyte stimulating hormone ($\alpha$-MSH) and of adrenocorticotropic hormone (ACTH), and also suppressed proopiomelanocortin (POMC) mRNA expression by normal human keratinocyte (KC)s. Further, L-cysteine, N-acetyl-cysteine, $\alpha$-tocopheryl ferulate showed suppressive effect on UVB-induced POMC mRNA expression. However, TRX released from UVB-irradiated KCs stimulated melanogenesis by up-regulating MSH receptor expression and its binding activity in melanocyte (MC)s. UVB-induced KC derived cytokines such as IL1, IL6, and ET1 upregulated MSH-receptor binding ability as well as MCl-R mRNA expression in cultured normal human MCs. MCl-R has a tendency to be upregulated by UVB-induced KC-derived cytokines as well as by direct UVB irradiation. These results suggest that antioxidants such as TRX suppresses UVB induction of POMC, but in the case of MCl-R, this gene can be mainly in the trend of upregulation by UVB-induced KC-derived factors including TRX.

  • PDF

Analysis of MC1R genotypes in three different colored Korean cattle (Hanwoo) (한우 후보종모우 및 칡소와 흑소에서 MC1R 유전자의 유전자형 분석)

  • Jin, Shil;Shim, Jung-Mi;Seo, Dong-Won;Jung, Woo-Young;Ryoo, Seung-Heui;Kim, Jin-Ho;Lee, Jun-Heon
    • Korean Journal of Agricultural Science
    • /
    • v.38 no.3
    • /
    • pp.453-458
    • /
    • 2011
  • The MC1R (Melanocortin 1 receptor) gene has been known as a causative gene of the coat colors in mammals and responsible for the E (Extension) locus which has three alleles ($E^D$, $E^+$, e) that determines coat colors. The dominant allele $E^D$ produces black or brown colors due to the missense mutation and the recessive e allele has frameshift mutation which shows red or yellow coat colors. Whereas the wild type $E^+$ produces variety of colors due to the interaction with A (Agouti) locus. In this study, PCR-RFLP was performed using two restriction enzymes (BsrF I and MspA1 I) in order to obtain MC1R genotypes in Korean brindle cattle and black cattle. The results showed that all of the animals have the $E^+$ alleles, indicating the $E^+$ allele might related with black coat colors. Later on, the experiments expanded to the 260 Korean candidate bulls whether these animals have the same $E^+$ allele. Among 260 samples investigated, 5% (13/260) of the animals had $E^+$e genotypes, indicating the $E^+$ allele is also present in the candidate bulls in a low frequency. Even though we expected that A locus also affect the black coat color in cattle, all the black coat color animals (brindle and black) have $E^+$ alleles in this study. Therefore, the genotyping of the MC1R gene in candidate bulls will recommended be applied for eliminating of black coat colors in Hanwoo population, if the farmers need to have the brown coat colors only.

Evaluation of coat color inheritance and production performance for crossbreed from Chinese indigenous Chenghua pig crossbred with Berkshire

  • Li, Yujing;Yuan, Rong;Gong, Zhengyin;Zou, Qin;Wang, Yifei;Tang, Guoqing;Zhu, Li;Li, Xuewei;Jiang, Yanzhi
    • Animal Bioscience
    • /
    • v.35 no.10
    • /
    • pp.1479-1488
    • /
    • 2022
  • Objective: This work was to determine coat inheritance and evaluate production performance for crossbred pigs from Berkshire×Chenghua (BC) compared with Chinese indigenous Chenghua (CH) pigs. Methods: The coat color phenotypes were recorded for more than 16,000 pigs, and the genotypes of melanocortin 1 receptor (MCIR) gene were identified by sequencing. The reproductive performance of 927 crossbred BC F4 gilts and 320 purebred CH gilts was recorded. Sixty pigs of each breed were randomly selected at approximately 60 days of age to determine growth performance during fattening period, which lasted for 150 days for BC pigs and 240 days for CH pigs. At the end of the fattening period, 30 pigs of each breed were slaughtered to determine carcass composition and meat quality. Results: The coat color of BC pigs exhibits a "dominant black" hereditary pattern, and all piglets derived from boars or sows genotyped ED1 ED1 homozygous for MC1R gene showed a uniform black coat phenotype. The BC F4 gilts displayed a good reproductive performance, showing a higher litter and tear size and were heavier at farrowing litter and at weaning litter than the CH gilts, but they reached puberty later than the CH gilts. BC F4 pigs exhibited improved growth and carcass characteristics with a higher average daily live weight gain, lower feed-to-gain ratio, and higher carcass lean meat rate than CH pigs. Like CH pigs, BC F4 pigs produced superior meat-quality characteristics, showing ideal pH and meat-color values, high intramuscular fat content and water-holding capacity, and acceptable muscle-fiber parameters. C18:1, C16:0, C18:0, and C18:2 were the main fatty acids in M. longissimus lumborum in the two breeds, and a remarkably high polyunsaturated/saturated fatty acid ratio of ~0.39 was observed in the BC F4 pigs. Conclusion: The BC F4 pigs exhibit a uniform black coat pattern and acceptable total production performance.

Characterization and Evaluation of Melanocortin 4 Receptor (MC4R) Gene Effect on Pork Quality Traits in Pigs (돼지 Melanocortin 4 Receptor (MC4R) 유전자의 육질연관성 분석)

  • Roh, Jung-Gun;Kim, Sang-Wook;Choi, Jung-Suk;Choi, Yang-Il;Kim, Jong-Joo;Choi, Bong-Hwan;Kim, Tae-Hun;Kim, Kwan-Suk
    • Journal of Animal Science and Technology
    • /
    • v.54 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • This study aimed to investigate the single nucleotide polymorphisms (SNPs) of the porcine MC4R gene and validate the effect of the MC4R genotype for marker assisted selection (MAS). Six amplicons were produced to analyze the entire base sequences of the porcine MC4R gene and six SNPs were detected (c.-780C>G, c.-135C>T, c.175C>T-Leu59Leu, c.707A>G-Arg236His, c.892A>G-Asp298Asn, and c.*430A>T). Linkage disequilibrium (LD) of the six SNPs was analyzed by performing haploid analysis. There was a perfect linkage disequilibrium in c.-780C>G, c.-135C>T, c.175C>T-Leu59Leu, c.707A>G-Arg236His, and c.*430A>T. Only the c.892A>G (Asp298Asn) SNP showed a very low LD with an $r^2$ value of 0.028 and the D' value of 0.348. As a result, the two SNPs-c.707A>G (Arg236His) and c.892A>G (Asp298Asn)-were selected to extract the genotype frequencies from the 5 pig breeds by using the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) genotype analysis method. The SNP frequency of c.707A>G (Arg236His) indicated the presence of the A (His) allele only in Yorkshire, while the G allele was fixed in the KNP, Landrace, Berkshire, and Duroc. Association analysis was carried out in 484 pigs with the c.707A>G (Arg236His) SNP and the meat quality traits of four different pig cross populations: a significant association was noted in crude fat, sirloin moisture, meat color, and the degree of red and yellow coloration. The frequency of the c.892A>G(Asp298Asn) SNP genotype varied among the breeds; while Duroc showed the highest frequency of the A (Asn) allele, KNP showed the highest frequency of the G (Asp) allele. Association analysis was carried out in 1126 pigs with the c.892A>G (Asp298Asn) SNP and the meat quality traits of four pig populations: a highly significant linkage was noted in the back-fat thickness (P<0.002). It was found that the back-fat thickness was higher in individuals with the AA genotype than in those with the AG or GG genotype. Thus, in this study, we verified that the c.892A>G (Asp298Asn) SNP in the pig MC4R gene has a sufficient effect as a gene marker for MAS in Korean pork industry.

Relationships between Single Nucleotide Polymorphism Markers and Meat Quality Traits of Duroc Breeding Stocks in Korea

  • Choi, J.S.;Jin, S.K.;Jeong, Y.H.;Jung, Y.C.;Jung, J.H.;Shim, K.S.;Choi, Y.I.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.9
    • /
    • pp.1229-1238
    • /
    • 2016
  • This study was conducted to determine the relationships of five intragenic single nucleotide polymorphism (SNP) markers (protein kinase adenosine monophosphate-activated ${\gamma}3$ subunit [PRKAG3], fatty acid synthase [FASN], calpastatin [CAST], high mobility group AT-hook 1 [HMGA1], and melanocortin-4 receptor [MC4R]) and meat quality traits of Duroc breeding stocks in Korea. A total of 200 purebred Duroc gilts from 8 sires and 40 dams at 4 pig breeding farms from 2010 to 2011 reaching market weight (110 kg) were slaughtered and their carcasses were chilled overnight. Longissimus dorsi muscles were removed from the carcass after 24 h of slaughter and used to determine pork properties including carcass weight, backfat thickness, moisture, intramuscular fat, $pH_{24h}$, shear force, redness, texture, and fatty acid composition. The PRKAG3, FASN, CAST, and MC4R gene SNPs were significantly associated with the meat quality traits (p<0.003). The meats of PRKAG3 (A 0.024/G 0.976) AA genotype had higher pH, redness and texture than those from PRKAG3 GG genotype. Meats of FASN (C 0.301/A 0.699) AA genotype had higher backfat thickness, texture, stearic acid, oleic acid and polyunsaturated fatty acid than FASN CC genotype. While the carcasses of CAST (A 0.373/G 0.627) AA genotype had thicker backfat, and lower shear force, palmitoleic acid and oleic acid content, they had higher stearic acid content than those from the CAST GG genotype. The MC4R (G 0.208/A 0.792) AA genotype were involved in increasing backfat thickness, carcass weight, moisture and saturated fatty acid content, and decreasing unsaturated fatty acid content in Duroc meat. These results indicated that the five SNP markers tested can be a help to select Duroc breed to improve carcass and meat quality properties in crossbred pigs.

The effects of Caffeoylserotonin on inhibition of melanogenesis through the downregulation of MITF via the reduction of intracellular cAMP and acceleration of ERK activation in B16 murine melanoma cells

  • Kim, Hye-Eun;Ishihara, Atsushi;Lee, Seong-Gene
    • BMB Reports
    • /
    • v.45 no.12
    • /
    • pp.724-729
    • /
    • 2012
  • In this study, we evaluated the anti-melanogenesis effects of Caffeoylserotonin (CaS) in B16 melanoma cells. Treatment with CaS reduced the melanin content and tyrosinase (TYR) activity in B16 melanoma cells in a dose-dependent manner. CaS inhibited the expression of melanogenesis-related proteins, including microphthalmia-associated transcription factor (MITF), TYR, and tyrosinase-related protein-1 (TRP-1), but not TRP-2. ${\alpha}$-MSH is known to interact with melanocortin 1 receptor (MC1R) thus activating adenylyl cyclase and increasing intracellular cyclic AMP (cAMP) levels. Furthermore, cAMP activates extracellular signal-regulated kinase 2 (ERK2) via phosphorylation, which phosphorylates MITF, thereby targeting the transcription factor to proteasomes for degradation. The CaS reduced intracellular cAMP levels to unstimulated levels and activated ERK phosphorylation within 30 min. The ERK inhibitor PD98059 abrogated the suppressive effect of CaS on ${\alpha}$-MSH-induced melanogenesis. Based on this study, the inhibitory effects of CaS on melanogenesis are derived from the downregulation of MITF signaling via the inhibition of intracellular cAMP levels, as well as acceleration of ERK activation.

MC1R Genotypes, Coat Color, and Muzzle Phenotype Variation in Korean Native Brindle Cattle (MC1R 유전자의 유전자형과 칡소의 모색 발현 및 비경색 분포에 관한 연구)

  • Park, Jae-Hee;Lee, Hae-Lee;Kim, Yong-Su;Kim, Jong-Gug
    • Journal of Animal Science and Technology
    • /
    • v.54 no.4
    • /
    • pp.255-265
    • /
    • 2012
  • The objectives of this study were to investigate MC1R genotype, coat color, and muzzle phenotype variationsin the Korean native brindle cattle (KNBC) maintaining family lines and to establish the mating system for increased brindle coat color appearance. KNBC with genotype and phenotype records were selected as experimental animals. The relationship between melanocortin 1 receptor (MC1R) genotypes, verified by PCR-RFLP, and brindle coat color appearance was determined. Fragments of the MC1R gene amplified by PCR were digested with MspI and RFLP was determined. KNBC had $E^+E^+$, $E^+e$, and ee genotypes. The $E^+e$ genotype was most common with 65%, compared to $E^+E^+$ (33.33%), or ee (1.67%). When the sire had $E^+e$ genotype and the dam had $E^+E^+$ genotype, and both of them had the whole body-brindle coat color, all of their offspring (4/4) had whole body-brindle coat color. When the sire had $E^+E^+$ genotype and the dam had $E^+e$ genotype, and both had whole body-brindle coat color, 44.44% (4/9) of the offspring had whole body-brindle coat color. The mating between the sires and dams with these two genotypes with whole body-brindle coat color may have the highest whole body-brindle coat color appearance in their offspring. Muzzle grades 3 or 4 were more common than other muzzle grades. This is the first report indicating the segregation of MC1R genotypes and the inheritance of coat color through family lines in KNBC. The mating system proposed from this study may increase the possibility of brindle coat color appearance in KNBC.