• Title/Summary/Keyword: melamine

Search Result 236, Processing Time 0.034 seconds

Selective Nitrogen Doping of Carbon Nanotubes Through Different Mechanical Mixing Methods with Melamine (멜라민과의 기계적 혼합을 통한 탄소나노튜브의 선택적 질소 도핑)

  • Seon-Yeon Kim;Taewoo Kim;Seung-Yeol Jeon
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.408-415
    • /
    • 2023
  • The formation of bonding configurations such as pyridinic-N, pyrrolic-N, and graphitic-N by nitrogen doping plays a crucial role in imparting distinct physical properties to carbon nanomaterials. In this study, we propose a simple and cost-effective approach to regulate nitrogen dopant configurations in carbon nanotubes (CNTs) by mixing melamine as a dopant source. We employed three distinct mechanical mixing techniques, namely magnetic stirring, bath sonication and tip sonication. The higher the ratio of melamine to CNT, the higher the ratio of Pyrrolic-N, and when mixed through stirring, the highest ratio of Pyridinic-N was shown. The facile method proposed in this study, which can easily form various types of nitrogen dopants in carbon nanotubes, is expected to facilitate the application of nitrogen-doped carbon nanomaterials.

Effect of Strength Increasing Sizes on the Quality of Fiberboard (섬유판(纖維板)의 증강(增强)사이즈제(齊)가 재질(材質)에 미치는 영향(影響))

  • Shin, Dong So;Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.30 no.1
    • /
    • pp.19-29
    • /
    • 1976
  • The fiberboard and paper mills in this country are much affected by the price hikes and shortage of phenolic resins, since phenolic acid as a raw material depends on imported good. It is prerequisite to fiberboard industry to help replace with other sized and stabilize the prices and supply of them, improving the quality of boards. Thus, the present study was carried out to examine the effect of strength increasing sized such as urea formaldehyde resin (anion and cation type) and urea melamine copolymer resin, on the quality of the wet forming hardboard, and comparing them with two types of proprietary modified melamine resins, and ordinary size, phenol resin. The Asplund pulp was prepared from wood wastes mixed with 20 percent of lauan and 80 percent of pines as a fibrous material. After sizing agents were added at a pH of 4.5 for 10 minutes with alum in the beater, the stock was made in the form of wet sheet, prepared, and then performed by hot pressing cycle: $180^{\circ}C$, $50-6-5kg/cm^2$, 1-2-7 minutes. The properties of hardboard were examined after air conditioning. The results obtained are summarized as follows: 1. There is a significant difference in specific gravity among hardboards that were treated with strength increasing resins, but no difference is effected by the increase in the resin content. In the case of modified melamine resin, its specific gravity is highest. The middle group comprises cation type of urea resin, anion type of urea resin, and acid colloid of urea-melamine copolymer resin. The lowest is phenolic resin. 2. The difference of the moisture content of hardboard both by the resins and by the amount of each resin applied is significant. The moisture content of hardboard becomes lower along with the increase of each resin content, but there is no difference between 2 and 3 percent. 3. For water absorption, there is a significant difference both in the adhesives used and in the amount of paraffin wax emulsion. The water resistance becomes higher inn proportion to the content of the paraffin wax emulsion. To satisfy KS F standards of the water resistance, a proprietary modified melamine resin (p-6100) and modified cation type of urea resin (p-1500) do not require any paraffin wax emulsion, but in the case of anion type of urea resin, cation type of urea resin, and urea-melamine copolymer resin, 1 percent of paraffin wax emulsion is needed, and 2 percent of paraffin wax emulsion in the case of phenolic resin. 4. The difference of flexural strength of hardboard both by the resins and by the amount of each resin is significant. Modified melamine resin shows the highest degree of flexural strength. Among the middle group are urea-melamine copolymer resin, p-1500, anion type of urea resin, and cation type of urea resin. Phenolic resin is the lowest. The cause may be attributable to factors combined with the pressing temperature, sizing effect, and thermal efficiency of press platens heated electrically. 5. Considering the economic advantages and properties of hardboard, it is proposed that urea-melamine copolymer resin and cation type of urea resin be used for the development of the fiberboard industry. It is desirable to further develop the modified urea-melamine copolymer resin and cation type of urea resin through continuous study.

  • PDF

A Novel Electrochemical Method for Sensitive Detection of Melamine in Infant Formula and Milk using Ascorbic Acid as Recognition Element

  • Li, Junhua;Kuang, Daizhi;Feng, Yonglan;Zhang, Fuxing;Xu, Zhifeng;Liu, Mengqin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.8
    • /
    • pp.2499-2507
    • /
    • 2012
  • A novel and convenient electrochemical method has been developed for sensitive determination of melamine (MEL) using ascorbic acid (AA) as the recognition element. The working electrode employed in this method was modified with the nanocomposite of hydroxyapatite/carbon nanotubes to enhance the current signal of recognition element. The interaction between MEL and AA was investigated by fourier transform infrared spectroscopy and cyclic voltammetry, and the experimental results indicated that hydrogen bonding was formed between MEL and AA. Because of the existing hydrogen bonding and electrostatic interaction, the anodic peak current of AA was decreased obviously while the non-electroactive MEL added in. It illustrated that the MEL acted as an inhibitor to the oxidation of AA and the decreasing signals can be used to detect MEL. Under the optimal conditions, the decrease in anodic peak current of AA was proportional to the MEL concentrations ranging from 10 to 350 nM, with a detection limit of 1.5 nM. Finally this newly-proposed method was successfully employed to detect MEL in infant formula and milk, and good recovery was achieved.

The Development of Melamine Superplasticizer Using Antiwashout Underwater Concrete (수중불분리콘크리트에 사용되는 멜라민유동화제 개발)

  • Kang, Hyun-Ju;Lee, Kyung-Hee;Cho, In-Sung;Park, Soon-Eui
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.10
    • /
    • pp.963-969
    • /
    • 2002
  • In this studies, methly celluloes was used as antiwashout admixture and when considering the physical properties and economical efficiencies of Underwater Concrete as the results of making an experiencing slump flow, flow loss, setting time, suspension and pH also compressive strength and underwater/an air compressive strength ratio according to the adding amount changes 5, 7, 9, 11 kg/$m^3$ to Underwater Concrete of melamine superplasticizer, the using amount of melamine superplasticizer in Underwater Concrete approximately represents 9 kg/$m^3$.

Preparation of Monodisperse Melamine-Formaldehyde Microspheres via Dispersed Polycondensation

  • Cheong, In-Woo;Shin, Jin-Sup;Kim, Jung-Hyun;Lee, Seung-Jun
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.225-232
    • /
    • 2004
  • We have successfully synthesized relatively monodisperse and cross-linked melamine-formaldehyde (M-F) microspheres by dispersed polycondensation and subsequent pH adjustment with serum replacement cleaning. The average particle sizes (equation omitted): weight-average and (equation omitted) : number-average), the polydispersity index (equation omitted), the number of particles N$\_$p/ and the gel content of the M-F microspheres were observed by varying the pH, the surfactant concentration, and the polymerization temperature. We observed that both the pH and the polymerization temperature were predominant factors in determining (equation omitted) and N$\_$p/, but the effect that the temperature and pH had on the gel content ( > 94% for all samples) was negligible. The exponents of the slopes of plots of N$\_$p/ versus pH and surfactant concentration were -10 and 0.6, respectively. Particle nucleation and growth were achieved within short periods; the incessant coagulation occurred even in the presence of surfactants.

The Effects of Glycerol Aftertreatment for Low-Formaldehyde Finishing (Glycerol 후처리에 의한 Free-formaldehyde 발생 억제 효과)

  • Choi Suk-Chul;Kim Ho-Jung
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.10 no.2
    • /
    • pp.59-67
    • /
    • 1986
  • To control the amounts of formaldehyde released from the cotton fabric finished with N-methylol compounds, glycerol was used as a formaldehyde-scavenging agent. It was observed the effects of catalysts and curing conditions when aftertreated with glycerol on melamine resin finished fabric. The effects of Different processes of glycerol treatment, and different resins, urea resin and melamine resin, were compared. The conclusions obtained from the results are as follows: 1) It was shown hatt the aftertreatment with glycerol (treated without catalyst) was more effective than treated with catalysts in controlling free formaldehyde. 2) The optimum curing temperature and curing time for the glycerol aftertreatment without adversely affecting the other properties of fabric was about $160^{\circ}C$, 3 min. 3) According to the increase of glycerol concentration in both aftertreatment and simultaneous treatment the amounts of free formaldehyde was reduced. The rate of decrease was manifest within the limits of $6\%$ in the case of simultaneous treatment with glycerol ana resins, and $3\%$ in the case of glycerol aftertreatment on resin finished fabrics. 4) Dry wrinkle recovery angle was decreased the increase of glycerol concentration. Melamine resin had a little adverse effect than urea resin, particulary glycerol aftertreatment. 5) The breaking strength was increased with the increase of glycerol concentration.

  • PDF

A new method for in line electrokinetic characterization of cakes

  • Lanteri, Yannick;Ballout, Wael;Fievet, Patrick;Deon, Sebastien;Szymczyk, Anthony;Sauvade, Patrick
    • Membrane and Water Treatment
    • /
    • v.4 no.3
    • /
    • pp.157-174
    • /
    • 2013
  • The present study is devoted to the validation of a new method for in line electrokinetic characterisation of deposits on membrane surfaces. This method is based upon simultaneous measurements of transversal streaming potential and permeates flux at constant pressure before and during the deposit formation. Dead-end filtration experiments were conducted with negative flat membranes forming a narrow slit channel, negative hollow fiber membranes and mono-dispersed suspensions of (negatively charged) polystyrene latex and (positively charged) melamine particles at various concentrations. It was observed that the overall streaming potential coefficient increased in absolute value with the deposited latex quantity, whereas it decreased and changed of sign during the filtration of melamine suspensions. By considering a resistance-in-series model, the streaming potential coefficient of the single deposit ($SP_d$) was deduced from the electrokinetic and hydraulic measurements. The independence of $SP_d$ with respect to growth kinetics validates the measurement method and the reliability of the proposed procedure for calculating $SP_d$. It was found that $SP_d$ levelled off much more quickly when filtration was performed through the slit channel. This different behaviour could result from a non-uniform distribution of the deposit thickness along the membrane given that the position of measuring electrodes is different between the two cells.

The Effect of Melamine Sulphonate High-Range Water Reducing Agent to the Fluidity of High-Flowability Paste (고유동페이스트의 유동특성에 미치는 멜라민계 고성능가수제의 영향)

  • Nam Ji-Hyun;Cho Eun-Young;Oh Sang-Gyun;Kim Jung-Kil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.11a
    • /
    • pp.71-74
    • /
    • 2005
  • The viscosity of high-flowability paste is very high compared to normal concrete for the low water-binder ratio(W/B). Therefore, high-flowability concrete is positively necessary to high-range water reducing agent. High-Flowability paste can make much higher fluidity with no occurrence of segregation, by its higher viscosity and lower yield value than normal concrete. The flowability of high-flowability paste must be evaluated not only by convention consistency test such as slump test but also by the base of the rheological properties of the fresh concrete. The purpose of this study is to analyze the fluidity of high-flowability paste according to the addition ratio of the Melamine Sulphonate high-range water reducing agent.; high-flowability paste is considered as Bingham plastic fluid with the rheology parameters of the plaste viscosity and yield value.

  • PDF

Influence of Nitrogen moieties on CO2 capture of Carbon Aerogel

  • Jeon, Da-Hee;Min, Byung-Gak;Oh, Jong Gab;Nah, Changwoon;Park, Soo-Jin
    • Carbon letters
    • /
    • v.16 no.1
    • /
    • pp.57-61
    • /
    • 2015
  • Carbon aerogel is a porous carbon material possessing high porosity and high specific surface area. Nitrogen doping reduced the specific surface area and micropores, but it furnished basic sites to improve the $CO_2$ selectivity. In this work, N-doped carbon aerogels were prepared with different ratios of resorcinol/melamine by using the sol-gel method. The morphological properties were characterized by scanning electron microscopy (SEM). Nitrogen content was studied by X-ray photoelectron spectroscopy (XPS) and the specific surface area and micropore volume were analyzed by $N_2$ adsorption-desorption isotherms at 77 K. The $CO_2$ adsorption capacity was investigated by $CO_2$ adsorption-desorption isotherms at 298 K and 1 bar. Melamine containing N-doped CAs showed a high nitrogen content (5.54 wt.%). The prepared N-doped CAs exhibited a high $CO_2$ capture capacity of 118.77 mg/g (at resorcinol/melamine = 1:0.3). Therefore, we confirmed that the $CO_2$ adsorption capacity was strongly affected by the nitrogen moieties.

Preparation of melamine-grafted graphene oxide and evaluation of its efficacy as a flame retardant additive for polypropylene

  • Monji, Parisa;Jahanmardi, Reza;Mehranpour, Milad
    • Carbon letters
    • /
    • v.27
    • /
    • pp.81-89
    • /
    • 2018
  • The present study aimed to prepare a novel efficient flame retardant additive for polypropylene. The new flame retardant was prepared by chemical grafting of melamine to graphene oxide with the aid of thionyl chloride. Fourier-transform infrared spectroscopy and thermogravimetric analysis proved that melamine had been successfully grafted to the graphene oxide. The modified graphene oxide was incorporated into polypropylene via solution mixing followed by anti-solvent precipitatio. Homogeneous distribution as well as exfoliation of the nanoplatelets in the polymer matrix was observed using transmission electron microscopy. Thermogravimetric analysis showed a significant improvement in the thermo-oxidative stability of the polymer after incorporating 2 wt% of the modified graphene oxide. The modified graphene oxide also enhanced the limiting oxygen index of the polymer. However, the amount of improvement was not enough for the polymer to be ranked as a self-extinguishing material. Cone calorimetry showed that incorporating 2 wt% of the modified graphene oxide lowered total heat release and the average production rate of carbon monoxide during burning of the polymer by as much as 40 and 35%, respectively. Hence, it was concluded that the new flame retardant can retard burning of the polymer efficiently and profoundly reduce suffocation risk of exposure to burning polymer byproducts.