Preparation of Monodisperse Melamine-Formaldehyde Microspheres via Dispersed Polycondensation

  • Cheong, In-Woo (Nanosphere Process and Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Shin, Jin-Sup (Nanosphere Process and Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Kim, Jung-Hyun (Nanosphere Process and Technology Laboratory, Department of Chemical Engineering, Yonsei University) ;
  • Lee, Seung-Jun (Department of Chemical and Bimolecular Engineering, KAIST)
  • Published : 2004.04.01

Abstract

We have successfully synthesized relatively monodisperse and cross-linked melamine-formaldehyde (M-F) microspheres by dispersed polycondensation and subsequent pH adjustment with serum replacement cleaning. The average particle sizes (equation omitted): weight-average and (equation omitted) : number-average), the polydispersity index (equation omitted), the number of particles N$\_$p/ and the gel content of the M-F microspheres were observed by varying the pH, the surfactant concentration, and the polymerization temperature. We observed that both the pH and the polymerization temperature were predominant factors in determining (equation omitted) and N$\_$p/, but the effect that the temperature and pH had on the gel content ( > 94% for all samples) was negligible. The exponents of the slopes of plots of N$\_$p/ versus pH and surfactant concentration were -10 and 0.6, respectively. Particle nucleation and growth were achieved within short periods; the incessant coagulation occurred even in the presence of surfactants.

Keywords

References

  1. J. Polym. Sci. v.1 W.P.Hohenstein;H.Mark https://doi.org/10.1002/pol.1946.120010611
  2. J. Polym. Sci. v.1 W.P.Hohenstein;H.Mark https://doi.org/10.1002/pol.1946.120010207
  3. J. Coat. Tech. v.51 W.J.Schneider;L.E.Gast
  4. J. coat. Tech. v.65 A.Wegmann
  5. Jingangshi Yu Moliao Moju Gongcheng Y.Li
  6. Eur. Polym. J. v.37 Z.Zhaoying;H.Yuhui;L.Bing;C.Guangming https://doi.org/10.1016/S0014-3057(00)00192-0
  7. Makrom. Chem. v.120 A.Renner https://doi.org/10.1002/macp.1968.021200108
  8. Kolloidnyi Zhurnal v.32 P.I.Zubov;T.A.Vorob'eva;I.N.Vlodavets
  9. Polimery (Warsaw, Poland) v.23 Z.Z.Hulewicz;T.Samsel
  10. Khim. Promys, Seriya V.V.Milotskii;S.V.Babich;S.I.Pogorelenko
  11. J. paint Tech. v.40 M.E.Woods;J.S.Dodge;I.M.Krieger;P.E.Pierce
  12. Polym. Mater. Sci. Eng. v.54 J.W.Vanderhoff;M.S.El-Aasser;F.J.Micale;E.D.Sudol;C.M.Tseng;A.Silwanowicz;H.R.Sheu;D.M.Kornfeld
  13. Macromolecules v.20 C.K.Ober;K.P.Lok https://doi.org/10.1021/ma00168a007
  14. Colloid Polym. Sci. v.269 M.Okubo;Y.Katayama;Y.Yamamoto https://doi.org/10.1007/BF00665494
  15. Colloid Polym. Sci. v.269 M.Okubo;M.Shiozaki;M.Tsujihiro;Y.Tsukuda https://doi.org/10.1007/BF00665495
  16. J. Colloid Interface Sci. v.158 G.Tuin;A.C.I.A.Peters;A.J.G. van Diemen;H.N.Stein https://doi.org/10.1006/jcis.1993.1286
  17. J. Appl. Polym. Sci. v.55 R.Hu;V.L.Dimonie;E.D.Sudol;M.S.El-Aasser https://doi.org/10.1002/app.1995.070551006
  18. Colloids Surf. A. v.109 S.Omi https://doi.org/10.1016/0927-7757(95)03477-3
  19. Polymer(Korea) v.24 S.E.Shim;J.M.Byun;J.W.Jun;Y.J.Cha;S.J.Choe
  20. Colloids Surf. A. v.145 Y.K.Ha;H.J.Lee;J.H.Kim https://doi.org/10.1016/S0927-7757(98)00554-8
  21. Colloid Polym. Sci. v.270 M.Okubo;T.Nakagawa https://doi.org/10.1007/BF00657729
  22. J. Appl. Polym. Sci. v.60 M.Okubo;T.Yamashita;M.Shiozaki https://doi.org/10.1002/(SICI)1097-4628(19960516)60:7<1025::AID-APP13>3.0.CO;2-#
  23. Adv. Colloid Interface Sci. v.13 J.Ugelstad;P.C.Moerk;K.Herder;Kaggerud;T.Ellingsen;A.Berge https://doi.org/10.1016/0001-8686(80)87003-5
  24. Ukr. Khim. Z. (Russian Edition) v.52 I.M.Solomentseva;L.A.Velichanskaya;V.V.Teselkin;A.K.Zapol'skii;V.G.Tikhonov
  25. Macromol. Chem. Phys. v.200 S.Jahromi https://doi.org/10.1002/(SICI)1521-3935(19991001)200:10<2230::AID-MACP2230>3.0.CO;2-U
  26. Macromolecules v.23 A.Kumar;V.Katiyar https://doi.org/10.1021/ma00218a003
  27. J. Chem. Phys. v.16 W.V.Smith;R.H.Ewart https://doi.org/10.1063/1.1746951