• 제목/요약/키워드: medium optimization

검색결과 638건 처리시간 0.032초

Optimization of Medium Composition for Growth of Leuconostoc mesenteroides

  • 김현;엄현주;서동미;한남수
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2003년도 생물공학의 동향(XII)
    • /
    • pp.153-156
    • /
    • 2003
  • The MRS medium is widely used as an optimized medium for the growth of Lactobacillus spp. and also used for the growth of Leuconostoc spp. Leuconostoc mesenteroides shows quite different physicochemical properties compared to Lactobacilli spp. and it is one of the major strain of kimchi fermenting microorganisms with its usefulness in our traditional foods and availability in biotechnology in the future, specifically tailor-made medium is necessary for the growth of Leuconostoc mesenteroides. Sequential experimental designs (Plackett-Burman, fractional factorial, steepest ascent, central composite design and response surface methodology) were introduced to optimize and improve the Leuconostoc medium. Fifteen medium ingredients were investigated and fructose, sodium acetate and ammonium citrate were determined to give a critical and positive effect for cell-growth. The yield of biomass using the optimal medium was improved more than that of the MRS medium and the result of fed-batch culture showed the capability of the improvement in cell mass similar to the E.coli system.

  • PDF

Candida tropicalis DS-72에 의한 Xylose로부터 Xylitol의 생산

  • 오덕근;김상용
    • 한국미생물·생명공학회지
    • /
    • 제25권3호
    • /
    • pp.311-316
    • /
    • 1997
  • A high xylitol producing yeast was isolated from the sludge of xylose manufacturing factory and then identified as Candida tropicalis DS-72 according to physiological properties. The strain was able to produce xylitol in a high concentration up to 72g/l from 100g/l xylose in 32 hours. Medium optimization for xylitol production by C. tropicalis DS-72 was performed. Effect of various nitrogen sources on xylitol production was investigated. Of nitrogenous compounds, yeast extract was the most suitable organic nitrogen nutrient for the enhancement of xylitol production. However, inorganic nitrogen resulted in a low cell concentration and did not produce xylitol. Effect of inorganic salts such as KH$_{2}$PO$_{4}$, and MgSO$_{4}$, 7H$_{2}$O on xylitol production was also studied. Optimal medium was selected as xylose 100g/l, yeast extract 10g/l, KH$_{2}$PO$_{4}$, 5 g/l and MgSO$_{4}$, 7H$_{2}$O 0.2 g/l. Xylitol of 88 g/l was produced from 100 g/l xylose in 30 hours using the optimal medium in a flask. In a fermentor, a fed-batch culture with 300g/l xylose was carried out. A final xylitol concentration of 240 g/l in the culture could be obtained in 43 hours of culture time by maintaining the high level of dissolved oxygen during growth phase and limiting the dissolved oxygen in the same culture during production phase. This result corresponded to a xylitol yield of 80% and a xylitol productivity of 5.58 g/1-h.

  • PDF

Candida parapsilosis 돌연변이주에 의한 Xylitol 생산의 배지조건 최적화

  • 오덕근;윤상현;김정민;김상용;김정회
    • 한국미생물·생명공학회지
    • /
    • 제24권4호
    • /
    • pp.507-511
    • /
    • 1996
  • Medium optimization for xylitol production from xylose by Candida parapsilosis ATCC 22019 mutant was performed. Effect of various nitrogen sources on xylitol production was investigatied. Of inorganic nitrogenous compounds, ammonium sulfate was effective for xylitol production and yeast extract was the most suitable orangic nitrogen nutrient for enhancement of xylitol production. Effect of inorganic salts such as KH$_{2}$PO$_{4}$ and MgSO$_{4}$-7H$_{2}$0 on xylitol production was also studied. Optimal medium was selected as xylose of 50 g/l, yeast extract of 5 g/l, (NH4$_{4}$)$_{2}$SO$_{4}$ of 5 g/l, KH$_{2}$PO$_{4}$ of 5 g/l, MgSO$_{4}$-7H$_{2}$O of 0.2 g/l. In a fermentor by using the optimal medium, a final xylitol concentration of 37 g/l could be obtained from 50 g/l of xylose with a xylitol yield of 74% and a xylitol productivity of 0.58 g/1-hr. At 300 g/l xylose, fermentation was also carried out and then a final xylitol concentration of 242 g/l was obtained at 272 hours. It was corresponding to xylitol yield of 80.7% and xylitol productivity of 0.58 g/1-hr.

  • PDF

Statistical Optimization of Medium Components for the Production of Biosurfactant by Bacillus licheniformis K51

  • Joshi Joshi;Sanket Sanket;Yadav Sanjay;Nerurkar Anuradha;Desai Anjana J.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.313-319
    • /
    • 2007
  • The nutritional medium requirement for biosurfactant production by Bacillus licheniformis K51 was optimized. The important medium components, identified by the initial screening method of Plackett-Burman, were $H_3PO_4,\;CaCl_2,H_3BO_3$, and Na-EDTA. Box-Behnken response surface methodology was applied to further optimize biosurfactant production. The optimal concentrations for higher production of biosurfactants were (g/l): glucose, $1.1;NaNO_3,\;4.4;MgSO_4{\cdot}7H_2O,\;0.8;KCl,\;0.4;CaCl_2,\;0.27;H_3PO_4,\;1.0ml/l;\;and\;trace elements\;(mg/l):H_3BO_3,\;0.25;CuSO_4,\;0.6;MnSO_4,\;2.2;Na_{2}MoO_4,\;0.5;ZnSO_4,\;6.0;FeSO_4,\;8.0;CoCL_2,\;1.0;$ and Na-EDTA, 30.0. Using this statistical optimization method, the relative biosurfactant yield as critical micelle dilution (CMD) was increased from $10{\times}\;to\;105{\times}$, which is ten times higher than the non-optimized rich medium.

Development of Cabbage Juice Medium for Industrial Production of Leuconostoc mesenteroides Starter

  • Jeong, Eun Ji;Moon, Dae Won;Oh, Joon Suk;Moon, Jin Seok;Seong, Hyunbin;Kim, Kwang Yup;Han, Nam Soo
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권12호
    • /
    • pp.2112-2118
    • /
    • 2017
  • Leuconostoc mesenteroides is used as a starter to produce high-quality kimchi products. In this study, an efficient and economical cabbage juice medium (CJM) was developed by process optimization of cabbage extraction and pasteurization and by compositional supplementation of various lacking nutrients. The pasteurized cabbage juice was determined to be a good medium candidate to cultivate L. mesenteroides, showing maximal cell numbers ($9.85{\times}10^8CFU/ml$) after 24 h. Addition of sucrose and yeast extract with soy peptone resulted in increment of bacterial cell counts in CJM, showing the supplementing effect of the lacking nutrients. Furthermore, addition of shell powder gave a protective effect on bacterial cells by preventing pH decline and organic acid accumulation in CJM, resulting in a 2-fold increase of bacterial counts. The optimized composition of CJM was 70% cabbage juice diluted with water, 0.5% (w/v) sucrose, 1% (w/v) yeast extract, 1% (w/v) soy peptone, and 1.5% (w/v) ark shell powder. The CJM developed in this study was able to yield a comparable level of bacterial counts with MRS medium and reduced the cost by almost 10-fold.

Medium Optimization for Pediocin SA131 Production by Pediococcus pentosaceus SA131 against Bovine Mastitis Using Response Surface Methodology

  • Park, Yeo-Lang;Lee, Na-Kyoung;Park, Keun-Kyu;Park, Yong-Ho;Kim, Jong-Man;Nam, Hyang-Mi;Jung, Suk-Chan;Paik, Hyun-Dong
    • 한국축산식품학회지
    • /
    • 제30권1호
    • /
    • pp.66-72
    • /
    • 2010
  • Pediococcus pentosaceus SA131 was isolated from jeotgal, is the bacteriocin producer against bovine mastitis pathogens, Streptococcus uberis E290, Enterococcus gallinarum E362, and Staphylococcus epidermidis ATCC 12228. The medium composition for pediocin SA131 production by P. pentosaceus SA131 was optimized using response surface methodology. Component of medium was studied as carbon source (glucose, fructose, lactose, glycerol, sucrose, maltose, and mannitol), nitrogen source (beef extract, yeast extract, peptone, malt extract, and tryptone), mineral and surfactant ($MgSO_4$, $KH_2PO_4$, $(NH_4)_2SO_4$, $MnSO_4$, NaCl, sodium acetate, and Tween 80). Through one factor-at-a-time experiment, glucose, fructose, yeast extract, malt extract, NaCl, $MgSO_4$, and Tween 80 were determined as the good ingredient. The effects of major factors for pediocin SA131 production were investigated by two-level fractional factorial designs (FFD). By a $2^4$ FFD, fructose, yeast extract, and $MnSO_4$ were found to be the important factors for the bacteriocin production. Subsequently, a $2^3$ central composite design (CCD) was adopted to derive a statistical model for optimizing the composition of the fermentation medium. The estimated optimum composition for the production of pediocin SA131 by P. pentosaceus SA131 was as follows; 0.13% fructose, 1% glucose, 1.8% yeast extract, 2.58% $MnSO_4$, 0.2% NaCl, and 0.2% Tween 80. The pediocin production under optimized medium was increased to 1,000 AU/mL, compared to the 400 AU/mL in MRS medium.

Statistical Optimization of Medium Components for Milk-Clotting Enzyme Production by Bacillus amyloliquefaciens D4 Using Wheat Bran-an Agro-Industry Waste

  • Zhang, Weibing;He, Xiaoling;Liu, Hongna;Guo, Huiyuan;Ren, Fazheng;Gao, Weidong;Wen, Pengcheng
    • Journal of Microbiology and Biotechnology
    • /
    • 제23권8호
    • /
    • pp.1084-1091
    • /
    • 2013
  • In this paper, two statistical methods were applied to optimize medium components to improve the production of the milk-clotting enzyme by Bacillus amyloliquefaciens D4. First, wheat bran juice, skim milk powder, and $Na_2HPO_4$ were shown to have significant effects on D4 enzyme production using the Plackett-Burman experimental design. Subsequently, an optimal medium was obtained using the Box-Behnken method, which consisted of 3.31 g/l of skim milk powder, 5.0 g/l of sucrose, 0.1 g/l of $FeSO_4{\cdot}7H_2O$, 0.1 g/l of $MgSO_4{\cdot}7H_2O$, 0.1 g/l of $MnSO_4{\cdot}2H_2O$, 0.1 g/l of $ZnSO_4{\cdot}7H_2O$, 1.52 g/l of $Na_2HPO_4$, and 172.45 g/l of wheat bran juice. With this optimal medium, the milk-clotting enzyme production was remarkably enhanced. The milk-clotting enzyme activity reached 3,326.7 SU/ml after incubation of 48 h, which was 1.76-fold higher than that of the basic medium, showing that the Plackett-Burman design and Box-Behnken response surface method are effective to optimize medium components, and B. amyloliquefaciens D4 possessed a high rennet-producing capacity in the optimal medium.

내열성 항곰팡이 항생물질의 생산 최적화 (Optimization of the Production of a Thermostable Antifungal Antibiotic)

  • 신영준;정명주;정영기
    • KSBB Journal
    • /
    • 제15권6호
    • /
    • pp.584-588
    • /
    • 2000
  • The optimum conditions for the production of an antifungal antibiotic from Bacillus sp. YJ-63 were investigated. The oprimumized medium consisted of 1.5% soluble starch, 1% tryptone and 0.5% yeast extract, and temperature and initial medium pH for production were optimal at 35$^{\circ}C$ and pH 6.0, respectively. Production yield was significantly improved by shaking culture using 50 ml medium in 500 ml flasks. Under these conditions, the production of the antifungal antibiotic was growth-dependent, from 35hrs into cultivation to the stationary phase and endospore formation.

  • PDF

Design of multi-span steel box girder using lion pride optimization algorithm

  • Kaveh, A.;Mahjoubi, S.
    • Smart Structures and Systems
    • /
    • 제20권5호
    • /
    • pp.607-618
    • /
    • 2017
  • In this research, a newly developed nature-inspired optimization method, the Lion Pride Optimization algorithm (LPOA), is utilized for optimal design of composite steel box girder bridges. A composite box girder bridge is one of the common types of bridges used for medium spans due to their economic, aesthetic, and structural benefits. The aim of the present optimization procedure is to provide a feasible set of design variables in order to minimize the weight of the steel trapezoidal box girders. The solution space is delimited by different types of design constraints specified by the American Association of State Highway and Transportation Officials. Additionally, the optimal solution obtained by LPOA is compared to the results of other well-established meta-heuristic algorithms, namely Gray Wolf Optimization (GWO), Ant Lion Optimizer (ALO) and the results of former researches. By this comparison the capability of the LPOA in optimal design of composite steel box girder bridges is demonstrated.

유전자 조작한 Klebsiella pneumoniae로부터 L-트립토판 생산을 위한 발효배지 조건 (Media Optimization for L-tryptophan Production by Genetically Engineered Klebsiella pneumoniae)

  • 김천규;정용섭;홍석인
    • 한국미생물·생명공학회지
    • /
    • 제22권5호
    • /
    • pp.557-560
    • /
    • 1994
  • The optimum medium composition for the production of L-tryptophan with Klebsiella pnuemoniae pheA tyrA trpE trpR/pSC 101-trp$^{+}$ and the effect of precusors in the optimum medium were studied. The specific growth rate in the optimum medium was almost the same as that in the basal medium, the former showing 1.01 and the latter 1.07 hr $$^{-1}$, but the produced tryptophan was increased 45% in the optimum medium. The maximum amount of produced tryptophan was 159 mg/l within 14 hours. Tryptophan production was ceased by casamino acid addition over 4 g/l in medium, but cell maSS increased with its addition. Indole and anthranilate as precusors had toxic effect on growth and tryptophan production at experimented concentration range (over 20 mg/l), but L-serine had good effect on tryptophan production, resulting in 175 mg/l tryptophan within 14 hours.

  • PDF